Spaces:
Runtime error
Runtime error
| """ | |
| This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
| All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
| Reference: https://github.com/facebookresearch/Mask2Former/blob/main/demo/predictor.py | |
| """ | |
| import atexit | |
| import bisect | |
| import multiprocessing as mp | |
| from collections import deque | |
| import cv2 | |
| import torch | |
| import itertools | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.engine.defaults import DefaultPredictor as d2_defaultPredictor | |
| from detectron2.utils.video_visualizer import VideoVisualizer | |
| from detectron2.utils.visualizer import ColorMode, Visualizer, random_color | |
| import detectron2.utils.visualizer as d2_visualizer | |
| class DefaultPredictor(d2_defaultPredictor): | |
| def set_metadata(self, metadata): | |
| self.model.set_metadata(metadata) | |
| class OpenVocabVisualizer(Visualizer): | |
| def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7): | |
| """ | |
| Draw panoptic prediction annotations or results. | |
| Args: | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each | |
| segment. | |
| segments_info (list[dict] or None): Describe each segment in `panoptic_seg`. | |
| If it is a ``list[dict]``, each dict contains keys "id", "category_id". | |
| If None, category id of each pixel is computed by | |
| ``pixel // metadata.label_divisor``. | |
| area_threshold (int): stuff segments with less than `area_threshold` are not drawn. | |
| Returns: | |
| output (VisImage): image object with visualizations. | |
| """ | |
| pred = d2_visualizer._PanopticPrediction(panoptic_seg, segments_info, self.metadata) | |
| if self._instance_mode == ColorMode.IMAGE_BW: | |
| self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask())) | |
| # draw mask for all semantic segments first i.e. "stuff" | |
| for mask, sinfo in pred.semantic_masks(): | |
| category_idx = sinfo["category_id"] | |
| try: | |
| mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]] | |
| except AttributeError: | |
| mask_color = None | |
| text = self.metadata.stuff_classes[category_idx].split(',')[0] | |
| self.draw_binary_mask( | |
| mask, | |
| color=mask_color, | |
| edge_color=d2_visualizer._OFF_WHITE, | |
| text=text, | |
| alpha=alpha, | |
| area_threshold=area_threshold, | |
| ) | |
| # draw mask for all instances second | |
| all_instances = list(pred.instance_masks()) | |
| if len(all_instances) == 0: | |
| return self.output | |
| masks, sinfo = list(zip(*all_instances)) | |
| category_ids = [x["category_id"] for x in sinfo] | |
| try: | |
| scores = [x["score"] for x in sinfo] | |
| except KeyError: | |
| scores = None | |
| stuff_classes = self.metadata.stuff_classes | |
| stuff_classes = [x.split(',')[0] for x in stuff_classes] | |
| labels = d2_visualizer._create_text_labels( | |
| category_ids, scores, stuff_classes, [x.get("iscrowd", 0) for x in sinfo] | |
| ) | |
| try: | |
| colors = [ | |
| self._jitter([x / 255 for x in self.metadata.stuff_colors[c]]) for c in category_ids | |
| ] | |
| except AttributeError: | |
| colors = None | |
| self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha) | |
| return self.output | |
| class VisualizationDemo(object): | |
| def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False): | |
| """ | |
| Args: | |
| cfg (CfgNode): | |
| instance_mode (ColorMode): | |
| parallel (bool): whether to run the model in different processes from visualization. | |
| Useful since the visualization logic can be slow. | |
| """ | |
| coco_metadata = MetadataCatalog.get("openvocab_coco_2017_val_panoptic_with_sem_seg") | |
| ade20k_metadata = MetadataCatalog.get("openvocab_ade20k_panoptic_val") | |
| lvis_classes = open("./fcclip/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines() | |
| lvis_classes = [x[x.find(':')+1:] for x in lvis_classes] | |
| lvis_colors = list( | |
| itertools.islice(itertools.cycle(coco_metadata.stuff_colors), len(lvis_classes)) | |
| ) | |
| # rerrange to thing_classes, stuff_classes | |
| coco_thing_classes = coco_metadata.thing_classes | |
| coco_stuff_classes = [x for x in coco_metadata.stuff_classes if x not in coco_thing_classes] | |
| coco_thing_colors = coco_metadata.thing_colors | |
| coco_stuff_colors = [x for x in coco_metadata.stuff_colors if x not in coco_thing_colors] | |
| ade20k_thing_classes = ade20k_metadata.thing_classes | |
| ade20k_stuff_classes = [x for x in ade20k_metadata.stuff_classes if x not in ade20k_thing_classes] | |
| ade20k_thing_colors = ade20k_metadata.thing_colors | |
| ade20k_stuff_colors = [x for x in ade20k_metadata.stuff_colors if x not in ade20k_thing_colors] | |
| user_classes = [] | |
| user_colors = [random_color(rgb=True, maximum=1) for _ in range(len(user_classes))] | |
| stuff_classes = coco_stuff_classes + ade20k_stuff_classes | |
| stuff_colors = coco_stuff_colors + ade20k_stuff_colors | |
| thing_classes = user_classes + coco_thing_classes + ade20k_thing_classes + lvis_classes | |
| thing_colors = user_colors + coco_thing_colors + ade20k_thing_colors + lvis_colors | |
| thing_dataset_id_to_contiguous_id = {x: x for x in range(len(thing_classes))} | |
| DatasetCatalog.register( | |
| "openvocab_dataset", lambda x: [] | |
| ) | |
| self.metadata = MetadataCatalog.get("openvocab_dataset").set( | |
| stuff_classes=thing_classes+stuff_classes, | |
| stuff_colors=thing_colors+stuff_colors, | |
| thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id, | |
| ) | |
| #print("self.metadata:", self.metadata) | |
| self.cpu_device = torch.device("cpu") | |
| self.instance_mode = instance_mode | |
| self.parallel = parallel | |
| if parallel: | |
| num_gpu = torch.cuda.device_count() | |
| self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) | |
| else: | |
| self.predictor = DefaultPredictor(cfg) | |
| self.predictor.set_metadata(self.metadata) | |
| def run_on_image(self, image): | |
| """ | |
| Args: | |
| image (np.ndarray): an image of shape (H, W, C) (in BGR order). | |
| This is the format used by OpenCV. | |
| Returns: | |
| predictions (dict): the output of the model. | |
| vis_output (VisImage): the visualized image output. | |
| """ | |
| vis_output = None | |
| predictions = self.predictor(image) | |
| # Convert image from OpenCV BGR format to Matplotlib RGB format. | |
| image = image[:, :, ::-1] | |
| visualizer = OpenVocabVisualizer(image, self.metadata, instance_mode=self.instance_mode) | |
| if "panoptic_seg" in predictions: | |
| panoptic_seg, segments_info = predictions["panoptic_seg"] | |
| vis_output = visualizer.draw_panoptic_seg( | |
| panoptic_seg.to(self.cpu_device), segments_info | |
| ) | |
| else: | |
| if "sem_seg" in predictions: | |
| vis_output = visualizer.draw_sem_seg( | |
| predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
| ) | |
| if "instances" in predictions: | |
| instances = predictions["instances"].to(self.cpu_device) | |
| vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
| return predictions, vis_output | |
| def _frame_from_video(self, video): | |
| while video.isOpened(): | |
| success, frame = video.read() | |
| if success: | |
| yield frame | |
| else: | |
| break | |
| class AsyncPredictor: | |
| """ | |
| A predictor that runs the model asynchronously, possibly on >1 GPUs. | |
| Because rendering the visualization takes considerably amount of time, | |
| this helps improve throughput a little bit when rendering videos. | |
| """ | |
| class _StopToken: | |
| pass | |
| class _PredictWorker(mp.Process): | |
| def __init__(self, cfg, task_queue, result_queue): | |
| self.cfg = cfg | |
| self.task_queue = task_queue | |
| self.result_queue = result_queue | |
| super().__init__() | |
| def run(self): | |
| predictor = DefaultPredictor(self.cfg) | |
| while True: | |
| task = self.task_queue.get() | |
| if isinstance(task, AsyncPredictor._StopToken): | |
| break | |
| idx, data = task | |
| result = predictor(data) | |
| self.result_queue.put((idx, result)) | |
| def __init__(self, cfg, num_gpus: int = 1): | |
| """ | |
| Args: | |
| cfg (CfgNode): | |
| num_gpus (int): if 0, will run on CPU | |
| """ | |
| num_workers = max(num_gpus, 1) | |
| self.task_queue = mp.Queue(maxsize=num_workers * 3) | |
| self.result_queue = mp.Queue(maxsize=num_workers * 3) | |
| self.procs = [] | |
| for gpuid in range(max(num_gpus, 1)): | |
| cfg = cfg.clone() | |
| cfg.defrost() | |
| cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" | |
| self.procs.append( | |
| AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) | |
| ) | |
| self.put_idx = 0 | |
| self.get_idx = 0 | |
| self.result_rank = [] | |
| self.result_data = [] | |
| for p in self.procs: | |
| p.start() | |
| atexit.register(self.shutdown) | |
| def put(self, image): | |
| self.put_idx += 1 | |
| self.task_queue.put((self.put_idx, image)) | |
| def get(self): | |
| self.get_idx += 1 # the index needed for this request | |
| if len(self.result_rank) and self.result_rank[0] == self.get_idx: | |
| res = self.result_data[0] | |
| del self.result_data[0], self.result_rank[0] | |
| return res | |
| while True: | |
| # make sure the results are returned in the correct order | |
| idx, res = self.result_queue.get() | |
| if idx == self.get_idx: | |
| return res | |
| insert = bisect.bisect(self.result_rank, idx) | |
| self.result_rank.insert(insert, idx) | |
| self.result_data.insert(insert, res) | |
| def __len__(self): | |
| return self.put_idx - self.get_idx | |
| def __call__(self, image): | |
| self.put(image) | |
| return self.get() | |
| def shutdown(self): | |
| for _ in self.procs: | |
| self.task_queue.put(AsyncPredictor._StopToken()) | |
| def default_buffer_size(self): | |
| return len(self.procs) * 5 |