|
""" |
|
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). |
|
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. |
|
|
|
Reference: https://github.com/facebookresearch/Mask2Former/blob/main/demo/predictor.py |
|
""" |
|
|
|
import atexit |
|
import bisect |
|
import multiprocessing as mp |
|
from collections import deque |
|
|
|
import cv2 |
|
import torch |
|
import itertools |
|
|
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.engine.defaults import DefaultPredictor as d2_defaultPredictor |
|
from detectron2.utils.video_visualizer import VideoVisualizer |
|
from detectron2.utils.visualizer import ColorMode, Visualizer, random_color |
|
import detectron2.utils.visualizer as d2_visualizer |
|
|
|
|
|
class DefaultPredictor(d2_defaultPredictor): |
|
|
|
def set_metadata(self, metadata): |
|
self.model.set_metadata(metadata) |
|
|
|
|
|
class OpenVocabVisualizer(Visualizer): |
|
def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7): |
|
""" |
|
Draw panoptic prediction annotations or results. |
|
|
|
Args: |
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each |
|
segment. |
|
segments_info (list[dict] or None): Describe each segment in `panoptic_seg`. |
|
If it is a ``list[dict]``, each dict contains keys "id", "category_id". |
|
If None, category id of each pixel is computed by |
|
``pixel // metadata.label_divisor``. |
|
area_threshold (int): stuff segments with less than `area_threshold` are not drawn. |
|
|
|
Returns: |
|
output (VisImage): image object with visualizations. |
|
""" |
|
pred = d2_visualizer._PanopticPrediction(panoptic_seg, segments_info, self.metadata) |
|
|
|
if self._instance_mode == ColorMode.IMAGE_BW: |
|
self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask())) |
|
|
|
for mask, sinfo in pred.semantic_masks(): |
|
category_idx = sinfo["category_id"] |
|
try: |
|
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]] |
|
except AttributeError: |
|
mask_color = None |
|
|
|
text = self.metadata.stuff_classes[category_idx].split(',')[0] |
|
self.draw_binary_mask( |
|
mask, |
|
color=mask_color, |
|
edge_color=d2_visualizer._OFF_WHITE, |
|
text=text, |
|
alpha=alpha, |
|
area_threshold=area_threshold, |
|
) |
|
|
|
all_instances = list(pred.instance_masks()) |
|
if len(all_instances) == 0: |
|
return self.output |
|
masks, sinfo = list(zip(*all_instances)) |
|
category_ids = [x["category_id"] for x in sinfo] |
|
|
|
try: |
|
scores = [x["score"] for x in sinfo] |
|
except KeyError: |
|
scores = None |
|
stuff_classes = self.metadata.stuff_classes |
|
stuff_classes = [x.split(',')[0] for x in stuff_classes] |
|
labels = d2_visualizer._create_text_labels( |
|
category_ids, scores, stuff_classes, [x.get("iscrowd", 0) for x in sinfo] |
|
) |
|
|
|
try: |
|
colors = [ |
|
self._jitter([x / 255 for x in self.metadata.stuff_colors[c]]) for c in category_ids |
|
] |
|
except AttributeError: |
|
colors = None |
|
self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha) |
|
|
|
return self.output |
|
|
|
|
|
class VisualizationDemo(object): |
|
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
instance_mode (ColorMode): |
|
parallel (bool): whether to run the model in different processes from visualization. |
|
Useful since the visualization logic can be slow. |
|
""" |
|
|
|
coco_metadata = MetadataCatalog.get("openvocab_coco_2017_val_panoptic_with_sem_seg") |
|
ade20k_metadata = MetadataCatalog.get("openvocab_ade20k_panoptic_val") |
|
lvis_classes = open("./fcclip/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines() |
|
lvis_classes = [x[x.find(':')+1:] for x in lvis_classes] |
|
lvis_colors = list( |
|
itertools.islice(itertools.cycle(coco_metadata.stuff_colors), len(lvis_classes)) |
|
) |
|
|
|
coco_thing_classes = coco_metadata.thing_classes |
|
coco_stuff_classes = [x for x in coco_metadata.stuff_classes if x not in coco_thing_classes] |
|
coco_thing_colors = coco_metadata.thing_colors |
|
coco_stuff_colors = [x for x in coco_metadata.stuff_colors if x not in coco_thing_colors] |
|
ade20k_thing_classes = ade20k_metadata.thing_classes |
|
ade20k_stuff_classes = [x for x in ade20k_metadata.stuff_classes if x not in ade20k_thing_classes] |
|
ade20k_thing_colors = ade20k_metadata.thing_colors |
|
ade20k_stuff_colors = [x for x in ade20k_metadata.stuff_colors if x not in ade20k_thing_colors] |
|
|
|
user_classes = [] |
|
user_colors = [random_color(rgb=True, maximum=1) for _ in range(len(user_classes))] |
|
|
|
stuff_classes = coco_stuff_classes + ade20k_stuff_classes |
|
stuff_colors = coco_stuff_colors + ade20k_stuff_colors |
|
thing_classes = user_classes + coco_thing_classes + ade20k_thing_classes + lvis_classes |
|
thing_colors = user_colors + coco_thing_colors + ade20k_thing_colors + lvis_colors |
|
|
|
thing_dataset_id_to_contiguous_id = {x: x for x in range(len(thing_classes))} |
|
DatasetCatalog.register( |
|
"openvocab_dataset", lambda x: [] |
|
) |
|
self.metadata = MetadataCatalog.get("openvocab_dataset").set( |
|
stuff_classes=thing_classes+stuff_classes, |
|
stuff_colors=thing_colors+stuff_colors, |
|
thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id, |
|
) |
|
|
|
self.cpu_device = torch.device("cpu") |
|
self.instance_mode = instance_mode |
|
|
|
self.parallel = parallel |
|
if parallel: |
|
num_gpu = torch.cuda.device_count() |
|
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) |
|
else: |
|
self.predictor = DefaultPredictor(cfg) |
|
self.predictor.set_metadata(self.metadata) |
|
|
|
def run_on_image(self, image): |
|
""" |
|
Args: |
|
image (np.ndarray): an image of shape (H, W, C) (in BGR order). |
|
This is the format used by OpenCV. |
|
Returns: |
|
predictions (dict): the output of the model. |
|
vis_output (VisImage): the visualized image output. |
|
""" |
|
vis_output = None |
|
predictions = self.predictor(image) |
|
|
|
image = image[:, :, ::-1] |
|
visualizer = OpenVocabVisualizer(image, self.metadata, instance_mode=self.instance_mode) |
|
if "panoptic_seg" in predictions: |
|
panoptic_seg, segments_info = predictions["panoptic_seg"] |
|
vis_output = visualizer.draw_panoptic_seg( |
|
panoptic_seg.to(self.cpu_device), segments_info |
|
) |
|
else: |
|
if "sem_seg" in predictions: |
|
vis_output = visualizer.draw_sem_seg( |
|
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) |
|
) |
|
if "instances" in predictions: |
|
instances = predictions["instances"].to(self.cpu_device) |
|
vis_output = visualizer.draw_instance_predictions(predictions=instances) |
|
|
|
return predictions, vis_output |
|
|
|
def _frame_from_video(self, video): |
|
while video.isOpened(): |
|
success, frame = video.read() |
|
if success: |
|
yield frame |
|
else: |
|
break |
|
|
|
|
|
class AsyncPredictor: |
|
""" |
|
A predictor that runs the model asynchronously, possibly on >1 GPUs. |
|
Because rendering the visualization takes considerably amount of time, |
|
this helps improve throughput a little bit when rendering videos. |
|
""" |
|
|
|
class _StopToken: |
|
pass |
|
|
|
class _PredictWorker(mp.Process): |
|
def __init__(self, cfg, task_queue, result_queue): |
|
self.cfg = cfg |
|
self.task_queue = task_queue |
|
self.result_queue = result_queue |
|
super().__init__() |
|
|
|
def run(self): |
|
predictor = DefaultPredictor(self.cfg) |
|
|
|
while True: |
|
task = self.task_queue.get() |
|
if isinstance(task, AsyncPredictor._StopToken): |
|
break |
|
idx, data = task |
|
result = predictor(data) |
|
self.result_queue.put((idx, result)) |
|
|
|
def __init__(self, cfg, num_gpus: int = 1): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
num_gpus (int): if 0, will run on CPU |
|
""" |
|
num_workers = max(num_gpus, 1) |
|
self.task_queue = mp.Queue(maxsize=num_workers * 3) |
|
self.result_queue = mp.Queue(maxsize=num_workers * 3) |
|
self.procs = [] |
|
for gpuid in range(max(num_gpus, 1)): |
|
cfg = cfg.clone() |
|
cfg.defrost() |
|
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" |
|
self.procs.append( |
|
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) |
|
) |
|
|
|
self.put_idx = 0 |
|
self.get_idx = 0 |
|
self.result_rank = [] |
|
self.result_data = [] |
|
|
|
for p in self.procs: |
|
p.start() |
|
atexit.register(self.shutdown) |
|
|
|
def put(self, image): |
|
self.put_idx += 1 |
|
self.task_queue.put((self.put_idx, image)) |
|
|
|
def get(self): |
|
self.get_idx += 1 |
|
if len(self.result_rank) and self.result_rank[0] == self.get_idx: |
|
res = self.result_data[0] |
|
del self.result_data[0], self.result_rank[0] |
|
return res |
|
|
|
while True: |
|
|
|
idx, res = self.result_queue.get() |
|
if idx == self.get_idx: |
|
return res |
|
insert = bisect.bisect(self.result_rank, idx) |
|
self.result_rank.insert(insert, idx) |
|
self.result_data.insert(insert, res) |
|
|
|
def __len__(self): |
|
return self.put_idx - self.get_idx |
|
|
|
def __call__(self, image): |
|
self.put(image) |
|
return self.get() |
|
|
|
def shutdown(self): |
|
for _ in self.procs: |
|
self.task_queue.put(AsyncPredictor._StopToken()) |
|
|
|
@property |
|
def default_buffer_size(self): |
|
return len(self.procs) * 5 |