Spaces:
Runtime error
Runtime error
Update mask_adapter/sam_maskadapter.py
Browse files- mask_adapter/sam_maskadapter.py +87 -36
mask_adapter/sam_maskadapter.py
CHANGED
|
@@ -19,6 +19,25 @@ from PIL import Image
|
|
| 19 |
PIXEL_MEAN = [122.7709383, 116.7460125, 104.09373615]
|
| 20 |
PIXEL_STD = [68.5005327, 66.6321579, 70.32316305]
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
class OpenVocabVisualizer(Visualizer):
|
| 23 |
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE, class_names=None):
|
| 24 |
super().__init__(img_rgb, metadata, scale, instance_mode)
|
|
@@ -113,7 +132,7 @@ class SAMVisualizationDemo(object):
|
|
| 113 |
|
| 114 |
return clip_vis_dense
|
| 115 |
|
| 116 |
-
def run_on_image(self, ori_image, class_names
|
| 117 |
height, width, _ = ori_image.shape
|
| 118 |
if width > height:
|
| 119 |
new_width = 896
|
|
@@ -139,25 +158,25 @@ class SAMVisualizationDemo(object):
|
|
| 139 |
image = (image - pixel_mean) / pixel_std
|
| 140 |
|
| 141 |
image = image.unsqueeze(0)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
# text = open_clip.tokenize(txts)
|
| 148 |
|
| 149 |
|
| 150 |
with torch.no_grad():
|
| 151 |
-
|
| 152 |
-
|
|
|
|
| 153 |
|
| 154 |
-
features = self.extract_features_convnext(image.float())
|
| 155 |
|
| 156 |
clip_feature = features['clip_vis_dense']
|
| 157 |
|
| 158 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
| 159 |
|
| 160 |
-
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).
|
| 161 |
|
| 162 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
|
| 163 |
mode='bilinear', align_corners=False)
|
|
@@ -188,7 +207,7 @@ class SAMVisualizationDemo(object):
|
|
| 188 |
select_mask.extend(locs[0].tolist())
|
| 189 |
for idx in select_mask:
|
| 190 |
select_cls[idx] = class_preds[idx]
|
| 191 |
-
semseg = torch.einsum("qc,qhw->chw", select_cls.float(), pred_masks.tensor.
|
| 192 |
|
| 193 |
r = semseg
|
| 194 |
blank_area = (r[0] == 0)
|
|
@@ -225,33 +244,16 @@ class SAMPointVisualizationDemo(object):
|
|
| 225 |
self.clip_model = clip_model
|
| 226 |
|
| 227 |
self.mask_adapter = mask_adapter
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
#from .data.datasets import openseg_classes
|
| 231 |
-
|
| 232 |
-
#COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
|
| 233 |
-
#COCO_CATEGORIES_seg = openseg_classes.get_coco_stuff_categories_with_prompt_eng()
|
| 234 |
-
|
| 235 |
-
#thing_classes = [k["name"] for k in COCO_CATEGORIES_pan if k["isthing"] == 1]
|
| 236 |
-
#stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
|
| 237 |
-
#print(coco_metadata)
|
| 238 |
-
#lvis_classes = open("./mask_adapter/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
|
| 239 |
-
#lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
|
| 240 |
-
|
| 241 |
-
#self.class_names = thing_classes + stuff_classes + lvis_classes
|
| 242 |
-
#self.text_embedding = torch.from_numpy(np.load("./text_embedding/lvis_coco_text_embedding.npy"))
|
| 243 |
|
| 244 |
self.class_names = self._load_class_names()
|
| 245 |
|
| 246 |
def _load_class_names(self):
|
| 247 |
from .data.datasets import openseg_classes
|
| 248 |
COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
|
| 249 |
-
thing_classes = [k["name"] for k in COCO_CATEGORIES_pan if k["isthing"] == 1]
|
| 250 |
stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
|
| 251 |
ADE20K_150_CATEGORIES_ = openseg_classes.get_ade20k_categories_with_prompt_eng()
|
| 252 |
-
ade20k_thing_classes = [k["name"] for k in ADE20K_150_CATEGORIES_ if k["isthing"] == 1]
|
| 253 |
ade20k_stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES_]
|
| 254 |
-
class_names =
|
| 255 |
return [ class_name for class_name in class_names ]
|
| 256 |
|
| 257 |
|
|
@@ -285,6 +287,12 @@ class SAMPointVisualizationDemo(object):
|
|
| 285 |
def run_on_image_with_points(self, ori_image, points,text_features,class_names=None):
|
| 286 |
if class_names != None:
|
| 287 |
self.class_names = class_names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
height, width, _ = ori_image.shape
|
| 289 |
|
| 290 |
image = ori_image
|
|
@@ -333,7 +341,18 @@ class SAMPointVisualizationDemo(object):
|
|
| 333 |
pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())
|
| 334 |
|
| 335 |
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
# Resize mask to match original image size
|
| 339 |
pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST) # Resize mask to match original image size
|
|
@@ -364,7 +383,12 @@ class SAMPointVisualizationDemo(object):
|
|
| 364 |
def run_on_image_with_boxes(self, ori_image, bbox,text_features,class_names=None):
|
| 365 |
if class_names != None:
|
| 366 |
self.class_names = class_names
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
height, width, _ = ori_image.shape
|
| 369 |
|
| 370 |
image = ori_image
|
|
@@ -387,12 +411,28 @@ class SAMPointVisualizationDemo(object):
|
|
| 387 |
image = image.unsqueeze(0)
|
| 388 |
|
| 389 |
# txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
with torch.no_grad():
|
| 393 |
-
# text_features =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 395 |
-
#
|
|
|
|
|
|
|
|
|
|
| 396 |
#text_features = self.text_embedding.to(self.mask_adapter.device)
|
| 397 |
features = self.extract_features_convnext(image.to(text_features).float())
|
| 398 |
clip_feature = features['clip_vis_dense']
|
|
@@ -411,7 +451,18 @@ class SAMPointVisualizationDemo(object):
|
|
| 411 |
pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())
|
| 412 |
|
| 413 |
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
# Resize mask to match original image size
|
| 417 |
pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST) # Resize mask to match original image size
|
|
|
|
| 19 |
PIXEL_MEAN = [122.7709383, 116.7460125, 104.09373615]
|
| 20 |
PIXEL_STD = [68.5005327, 66.6321579, 70.32316305]
|
| 21 |
|
| 22 |
+
|
| 23 |
+
VILD_PROMPT = [
|
| 24 |
+
"a photo of a {}.",
|
| 25 |
+
"This is a photo of a {}",
|
| 26 |
+
"There is a {} in the scene",
|
| 27 |
+
"There is the {} in the scene",
|
| 28 |
+
"a photo of a {} in the scene",
|
| 29 |
+
"a photo of a small {}.",
|
| 30 |
+
"a photo of a medium {}.",
|
| 31 |
+
"a photo of a large {}.",
|
| 32 |
+
"This is a photo of a small {}.",
|
| 33 |
+
"This is a photo of a medium {}.",
|
| 34 |
+
"This is a photo of a large {}.",
|
| 35 |
+
"There is a small {} in the scene.",
|
| 36 |
+
"There is a medium {} in the scene.",
|
| 37 |
+
"There is a large {} in the scene.",
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
class OpenVocabVisualizer(Visualizer):
|
| 42 |
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE, class_names=None):
|
| 43 |
super().__init__(img_rgb, metadata, scale, instance_mode)
|
|
|
|
| 132 |
|
| 133 |
return clip_vis_dense
|
| 134 |
|
| 135 |
+
def run_on_image(self, ori_image, class_names):
|
| 136 |
height, width, _ = ori_image.shape
|
| 137 |
if width > height:
|
| 138 |
new_width = 896
|
|
|
|
| 158 |
image = (image - pixel_mean) / pixel_std
|
| 159 |
|
| 160 |
image = image.unsqueeze(0)
|
| 161 |
+
|
| 162 |
+
if len(class_names) == 1:
|
| 163 |
+
class_names.append('others')
|
| 164 |
+
txts = [f'a photo of {cls_name}' for cls_name in class_names]
|
| 165 |
+
text = open_clip.tokenize(txts)
|
|
|
|
| 166 |
|
| 167 |
|
| 168 |
with torch.no_grad():
|
| 169 |
+
self.clip_model.cuda()
|
| 170 |
+
text_features = self.clip_model.encode_text(text.cuda())
|
| 171 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 172 |
|
| 173 |
+
features = self.extract_features_convnext(image.cuda().float())
|
| 174 |
|
| 175 |
clip_feature = features['clip_vis_dense']
|
| 176 |
|
| 177 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
| 178 |
|
| 179 |
+
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).float().cuda())
|
| 180 |
|
| 181 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
|
| 182 |
mode='bilinear', align_corners=False)
|
|
|
|
| 207 |
select_mask.extend(locs[0].tolist())
|
| 208 |
for idx in select_mask:
|
| 209 |
select_cls[idx] = class_preds[idx]
|
| 210 |
+
semseg = torch.einsum("qc,qhw->chw", select_cls.float(), pred_masks.tensor.float().cuda())
|
| 211 |
|
| 212 |
r = semseg
|
| 213 |
blank_area = (r[0] == 0)
|
|
|
|
| 244 |
self.clip_model = clip_model
|
| 245 |
|
| 246 |
self.mask_adapter = mask_adapter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
self.class_names = self._load_class_names()
|
| 249 |
|
| 250 |
def _load_class_names(self):
|
| 251 |
from .data.datasets import openseg_classes
|
| 252 |
COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
|
|
|
|
| 253 |
stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
|
| 254 |
ADE20K_150_CATEGORIES_ = openseg_classes.get_ade20k_categories_with_prompt_eng()
|
|
|
|
| 255 |
ade20k_stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES_]
|
| 256 |
+
class_names = stuff_classes + ade20k_stuff_classes #+ lvis_classes
|
| 257 |
return [ class_name for class_name in class_names ]
|
| 258 |
|
| 259 |
|
|
|
|
| 287 |
def run_on_image_with_points(self, ori_image, points,text_features,class_names=None):
|
| 288 |
if class_names != None:
|
| 289 |
self.class_names = class_names
|
| 290 |
+
else:
|
| 291 |
+
num_templates = []
|
| 292 |
+
for cls_name in self.class_names:
|
| 293 |
+
cls_name = cls_name.replace(', ', ',').split(',')#[0]
|
| 294 |
+
num_templates.append(len(cls_name))
|
| 295 |
+
|
| 296 |
height, width, _ = ori_image.shape
|
| 297 |
|
| 298 |
image = ori_image
|
|
|
|
| 341 |
pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())
|
| 342 |
|
| 343 |
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
|
| 344 |
+
|
| 345 |
+
if class_names is None:
|
| 346 |
+
final_class_preds = []
|
| 347 |
+
cur_idx = 0
|
| 348 |
+
for num_t in num_templates:
|
| 349 |
+
final_class_preds.append(class_preds[:, :, cur_idx: cur_idx + num_t].max(-1).values)
|
| 350 |
+
cur_idx += num_t
|
| 351 |
+
final_class_preds = torch.stack(final_class_preds, dim=-1)
|
| 352 |
+
|
| 353 |
+
class_preds = final_class_preds.squeeze(0)
|
| 354 |
+
else:
|
| 355 |
+
class_preds = class_preds.squeeze(0)
|
| 356 |
|
| 357 |
# Resize mask to match original image size
|
| 358 |
pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST) # Resize mask to match original image size
|
|
|
|
| 383 |
def run_on_image_with_boxes(self, ori_image, bbox,text_features,class_names=None):
|
| 384 |
if class_names != None:
|
| 385 |
self.class_names = class_names
|
| 386 |
+
else:
|
| 387 |
+
num_templates = []
|
| 388 |
+
for cls_name in self.class_names:
|
| 389 |
+
cls_name = cls_name.replace(', ', ',').split(',')#[0]
|
| 390 |
+
num_templates.append(len(cls_name))
|
| 391 |
+
|
| 392 |
height, width, _ = ori_image.shape
|
| 393 |
|
| 394 |
image = ori_image
|
|
|
|
| 411 |
image = image.unsqueeze(0)
|
| 412 |
|
| 413 |
# txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# txts.append(f'a photo of {cls_name}')
|
| 418 |
+
#assert len(self.class_names) * 14 == len(txts)
|
| 419 |
+
#text = open_clip.tokenize(txts)
|
| 420 |
|
| 421 |
with torch.no_grad():
|
| 422 |
+
# text_features = []
|
| 423 |
+
# bs = 128
|
| 424 |
+
# for idx in range(0, len(text), bs):
|
| 425 |
+
# text_features.append(
|
| 426 |
+
# self.clip_model.encode_text(text[idx:idx+bs].cuda())
|
| 427 |
+
# )
|
| 428 |
+
# text_features = torch.cat(text_features, dim=0)
|
| 429 |
+
|
| 430 |
+
# #text_features = self.clip_model.encode_text(text.cuda())
|
| 431 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 432 |
+
# text_features = text_features.reshape(text_features.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_features.shape[-1]).mean(1)
|
| 433 |
+
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 434 |
+
# print(text_features.shape)
|
| 435 |
+
# np.save("/data/yongkangli/Mask-Adapter-Demo/text_embedding/coco_ade20k_text_embedding_new.npy", text_features.cpu().numpy())
|
| 436 |
#text_features = self.text_embedding.to(self.mask_adapter.device)
|
| 437 |
features = self.extract_features_convnext(image.to(text_features).float())
|
| 438 |
clip_feature = features['clip_vis_dense']
|
|
|
|
| 451 |
pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())
|
| 452 |
|
| 453 |
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
|
| 454 |
+
|
| 455 |
+
if class_names is None:
|
| 456 |
+
final_class_preds = []
|
| 457 |
+
cur_idx = 0
|
| 458 |
+
for num_t in num_templates:
|
| 459 |
+
final_class_preds.append(class_preds[:, :, cur_idx: cur_idx + num_t].max(-1).values)
|
| 460 |
+
cur_idx += num_t
|
| 461 |
+
final_class_preds = torch.stack(final_class_preds, dim=-1)
|
| 462 |
+
|
| 463 |
+
class_preds = final_class_preds.squeeze(0)
|
| 464 |
+
else:
|
| 465 |
+
class_preds = class_preds.squeeze(0)
|
| 466 |
|
| 467 |
# Resize mask to match original image size
|
| 468 |
pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST) # Resize mask to match original image size
|