Spaces:
Runtime error
Runtime error
File size: 3,149 Bytes
5f8d7fa 761dbcf 3d8569e 5f8d7fa 3d8569e 5f8d7fa 3d8569e 5f8d7fa 3d8569e 5f8d7fa 3d8569e 5f8d7fa 3d8569e 5f8d7fa 3d8569e 5f8d7fa 761dbcf 5f8d7fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
SYSTEM_PROMPT = "As a generative chatbot (you are not a GPT but your structure is 50% the same), your primary function is to provide helpful and friendly responses to user queries. Feel free to add some personality, but make sure your responses are accurate and helpful. Your ownerand developer is: @Costikoooo (Discord user) other developers are unknown. Your name is Chattybot."
TITLE = "Chattybot"
EXAMPLE_INPUT = "What can I buy to make a breakfast with 15$?"
import gradio as gr
import os
import requests
zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def build_input_prompt(message, chatbot, system_prompt):
"""
Constructs the input prompt string from the chatbot interactions and the current message.
"""
input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
return input_prompt
def post_request_beta(payload):
"""
Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
"""
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
return response.json()
def predict_beta(message, chatbot=[], system_prompt=""):
input_prompt = build_input_prompt(message, chatbot, system_prompt)
data = {
"inputs": input_prompt
}
try:
response_data = post_request_beta(data)
json_obj = response_data[0]
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
bot_message = json_obj['generated_text']
return bot_message
elif 'error' in json_obj:
raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
else:
warning_msg = f"Unexpected response: {json_obj}"
raise gr.Error(warning_msg)
except requests.HTTPError as e:
error_msg = f"Request failed with status code {e.response.status_code}"
raise gr.Error(error_msg)
except json.JSONDecodeError as e:
error_msg = f"Failed to decode response as JSON: {str(e)}"
raise gr.Error(error_msg)
def test_preview_chatbot(message, history):
response = predict_beta(message, history, SYSTEM_PROMPT)
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
response = response[text_start:]
return response
welcome_preview_message = f"""
Welcome to **{TITLE}**! Say something like:
"{EXAMPLE_INPUT}"
"""
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
demo.launch() |