Update agent.py
Browse files
agent.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import os
|
2 |
import base64
|
|
|
3 |
from langchain_core.messages import HumanMessage, SystemMessage
|
4 |
from langchain_openai import ChatOpenAI
|
5 |
from langchain_community.tools import DuckDuckGoSearchResults
|
6 |
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
|
7 |
import wikipediaapi
|
8 |
import json
|
9 |
-
import
|
10 |
-
import
|
|
|
|
|
11 |
from langchain_core.tools import tool
|
12 |
from langgraph.graph import START, StateGraph, MessagesState
|
13 |
from langgraph.prebuilt import tools_condition
|
@@ -61,9 +64,253 @@ tavily_search_tool = TavilySearch(
|
|
61 |
topic="general",
|
62 |
)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
tools = [
|
65 |
tavily_search_tool,
|
66 |
-
search_wiki
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
]
|
68 |
|
69 |
def build_graph():
|
|
|
1 |
import os
|
2 |
import base64
|
3 |
+
import tempfile
|
4 |
from langchain_core.messages import HumanMessage, SystemMessage
|
5 |
from langchain_openai import ChatOpenAI
|
6 |
from langchain_community.tools import DuckDuckGoSearchResults
|
7 |
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
|
8 |
import wikipediaapi
|
9 |
import json
|
10 |
+
from urllib.parse import urlparse
|
11 |
+
import pytesseract
|
12 |
+
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
|
13 |
+
import cmath
|
14 |
from langchain_core.tools import tool
|
15 |
from langgraph.graph import START, StateGraph, MessagesState
|
16 |
from langgraph.prebuilt import tools_condition
|
|
|
64 |
topic="general",
|
65 |
)
|
66 |
|
67 |
+
@tool
|
68 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
69 |
+
"""
|
70 |
+
Save content to a file and return the path.
|
71 |
+
Args:
|
72 |
+
content (str): the content to save to the file
|
73 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
74 |
+
"""
|
75 |
+
temp_dir = tempfile.gettempdir()
|
76 |
+
if filename is None:
|
77 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
78 |
+
filepath = temp_file.name
|
79 |
+
else:
|
80 |
+
filepath = os.path.join(temp_dir, filename)
|
81 |
+
|
82 |
+
with open(filepath, "w") as f:
|
83 |
+
f.write(content)
|
84 |
+
|
85 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
86 |
+
|
87 |
+
@tool
|
88 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
89 |
+
"""
|
90 |
+
Download a file from a URL and save it to a temporary location.
|
91 |
+
Args:
|
92 |
+
url (str): the URL of the file to download.
|
93 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
94 |
+
"""
|
95 |
+
try:
|
96 |
+
# Parse URL to get filename if not provided
|
97 |
+
if not filename:
|
98 |
+
path = urlparse(url).path
|
99 |
+
filename = os.path.basename(path)
|
100 |
+
if not filename:
|
101 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
102 |
+
|
103 |
+
# Create temporary file
|
104 |
+
temp_dir = tempfile.gettempdir()
|
105 |
+
filepath = os.path.join(temp_dir, filename)
|
106 |
+
|
107 |
+
# Download the file
|
108 |
+
response = requests.get(url, stream=True)
|
109 |
+
response.raise_for_status()
|
110 |
+
|
111 |
+
# Save the file
|
112 |
+
with open(filepath, "wb") as f:
|
113 |
+
for chunk in response.iter_content(chunk_size=8192):
|
114 |
+
f.write(chunk)
|
115 |
+
|
116 |
+
return f"File downloaded to {filepath}. You can read this file to process its contents."
|
117 |
+
except Exception as e:
|
118 |
+
return f"Error downloading file: {str(e)}"
|
119 |
+
|
120 |
+
@tool
|
121 |
+
def sum(a: int, b:int) -> int:
|
122 |
+
"""Sum up two numbers.
|
123 |
+
Args:
|
124 |
+
a: first int
|
125 |
+
b: second int
|
126 |
+
"""
|
127 |
+
return a + b
|
128 |
+
|
129 |
+
@tool
|
130 |
+
def extract_text_from_image(image_path: str) -> str:
|
131 |
+
"""
|
132 |
+
Extract text from an image using OCR library pytesseract (if available).
|
133 |
+
Args:
|
134 |
+
image_path (str): the path to the image file.
|
135 |
+
"""
|
136 |
+
try:
|
137 |
+
# Open the image
|
138 |
+
image = Image.open(image_path)
|
139 |
+
|
140 |
+
# Extract text from the image
|
141 |
+
text = pytesseract.image_to_string(image)
|
142 |
+
|
143 |
+
return f"Extracted text from image:\n\n{text}"
|
144 |
+
except Exception as e:
|
145 |
+
return f"Error extracting text from image: {str(e)}"
|
146 |
+
|
147 |
+
|
148 |
+
@tool
|
149 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
150 |
+
"""
|
151 |
+
Analyze a CSV file using pandas and answer a question about it.
|
152 |
+
Args:
|
153 |
+
file_path (str): the path to the CSV file.
|
154 |
+
query (str): Question about the data
|
155 |
+
"""
|
156 |
+
try:
|
157 |
+
# Read the CSV file
|
158 |
+
df = pd.read_csv(file_path)
|
159 |
+
|
160 |
+
# Run various analyses based on the query
|
161 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
162 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
163 |
+
|
164 |
+
# Add summary statistics
|
165 |
+
result += "Summary statistics:\n"
|
166 |
+
result += str(df.describe())
|
167 |
+
|
168 |
+
return result
|
169 |
+
|
170 |
+
except Exception as e:
|
171 |
+
return f"Error analyzing CSV file: {str(e)}"
|
172 |
+
|
173 |
+
|
174 |
+
@tool
|
175 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
176 |
+
"""
|
177 |
+
Analyze an Excel file using pandas and answer a question about it.
|
178 |
+
Args:
|
179 |
+
file_path (str): the path to the Excel file.
|
180 |
+
query (str): Question about the data
|
181 |
+
"""
|
182 |
+
try:
|
183 |
+
# Read the Excel file
|
184 |
+
df = pd.read_excel(file_path)
|
185 |
+
|
186 |
+
# Run various analyses based on the query
|
187 |
+
result = (
|
188 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
189 |
+
)
|
190 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
191 |
+
|
192 |
+
# Add summary statistics
|
193 |
+
result += "Summary statistics:\n"
|
194 |
+
result += str(df.describe())
|
195 |
+
|
196 |
+
return result
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
return f"Error analyzing Excel file: {str(e)}"
|
200 |
+
|
201 |
+
|
202 |
+
@tool
|
203 |
+
def analyze_image(image_base64: str) -> Dict[str, Any]:
|
204 |
+
"""
|
205 |
+
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
|
206 |
+
Args:
|
207 |
+
image_base64 (str): Base64 encoded image string
|
208 |
+
Returns:
|
209 |
+
Dictionary with analysis result
|
210 |
+
"""
|
211 |
+
try:
|
212 |
+
img = decode_image(image_base64)
|
213 |
+
width, height = img.size
|
214 |
+
mode = img.mode
|
215 |
+
|
216 |
+
if mode in ("RGB", "RGBA"):
|
217 |
+
arr = np.array(img)
|
218 |
+
avg_colors = arr.mean(axis=(0, 1))
|
219 |
+
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
|
220 |
+
brightness = avg_colors.mean()
|
221 |
+
color_analysis = {
|
222 |
+
"average_rgb": avg_colors.tolist(),
|
223 |
+
"brightness": brightness,
|
224 |
+
"dominant_color": dominant,
|
225 |
+
}
|
226 |
+
else:
|
227 |
+
color_analysis = {"note": f"No color analysis for mode {mode}"}
|
228 |
+
|
229 |
+
thumbnail = img.copy()
|
230 |
+
thumbnail.thumbnail((100, 100))
|
231 |
+
thumb_path = save_image(thumbnail, "thumbnails")
|
232 |
+
thumbnail_base64 = encode_image(thumb_path)
|
233 |
+
|
234 |
+
return {
|
235 |
+
"dimensions": (width, height),
|
236 |
+
"mode": mode,
|
237 |
+
"color_analysis": color_analysis,
|
238 |
+
"thumbnail": thumbnail_base64,
|
239 |
+
}
|
240 |
+
except Exception as e:
|
241 |
+
return {"error": str(e)}
|
242 |
+
|
243 |
+
@tool
|
244 |
+
def transform_image(
|
245 |
+
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
|
246 |
+
) -> Dict[str, Any]:
|
247 |
+
"""
|
248 |
+
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
|
249 |
+
Args:
|
250 |
+
image_base64 (str): Base64 encoded input image
|
251 |
+
operation (str): Transformation operation
|
252 |
+
params (Dict[str, Any], optional): Parameters for the operation
|
253 |
+
Returns:
|
254 |
+
Dictionary with transformed image (base64)
|
255 |
+
"""
|
256 |
+
try:
|
257 |
+
img = decode_image(image_base64)
|
258 |
+
params = params or {}
|
259 |
+
|
260 |
+
if operation == "resize":
|
261 |
+
img = img.resize(
|
262 |
+
(
|
263 |
+
params.get("width", img.width // 2),
|
264 |
+
params.get("height", img.height // 2),
|
265 |
+
)
|
266 |
+
)
|
267 |
+
elif operation == "rotate":
|
268 |
+
img = img.rotate(params.get("angle", 90), expand=True)
|
269 |
+
elif operation == "crop":
|
270 |
+
img = img.crop(
|
271 |
+
(
|
272 |
+
params.get("left", 0),
|
273 |
+
params.get("top", 0),
|
274 |
+
params.get("right", img.width),
|
275 |
+
params.get("bottom", img.height),
|
276 |
+
)
|
277 |
+
)
|
278 |
+
elif operation == "flip":
|
279 |
+
if params.get("direction", "horizontal") == "horizontal":
|
280 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
281 |
+
else:
|
282 |
+
img = img.transpose(Image.FLIP_TOP_BOTTOM)
|
283 |
+
elif operation == "adjust_brightness":
|
284 |
+
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
|
285 |
+
elif operation == "adjust_contrast":
|
286 |
+
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
|
287 |
+
elif operation == "blur":
|
288 |
+
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
|
289 |
+
elif operation == "sharpen":
|
290 |
+
img = img.filter(ImageFilter.SHARPEN)
|
291 |
+
elif operation == "grayscale":
|
292 |
+
img = img.convert("L")
|
293 |
+
else:
|
294 |
+
return {"error": f"Unknown operation: {operation}"}
|
295 |
+
|
296 |
+
result_path = save_image(img)
|
297 |
+
result_base64 = encode_image(result_path)
|
298 |
+
return {"transformed_image": result_base64}
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
return {"error": str(e)}
|
302 |
+
|
303 |
+
|
304 |
tools = [
|
305 |
tavily_search_tool,
|
306 |
+
search_wiki,
|
307 |
+
save_and_read_file,
|
308 |
+
transform_image,
|
309 |
+
analyze_image,
|
310 |
+
analyze_excel_file,
|
311 |
+
analyze_csv_file,
|
312 |
+
extract_text_from_image,
|
313 |
+
download_file_from_url
|
314 |
]
|
315 |
|
316 |
def build_graph():
|