import os from typing import List, Dict, Any, Optional import base64 import tempfile from langchain_core.messages import HumanMessage, SystemMessage from langchain_openai import ChatOpenAI from langchain_community.tools import DuckDuckGoSearchResults from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_google_genai import ChatGoogleGenerativeAI import wikipediaapi import json from urllib.parse import urlparse import pytesseract from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter import cmath from langchain_core.tools import tool from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_tavily import TavilySearch import requests system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """ #api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("GEMINI_API_KEY") #model = ChatOpenAI(model="gpt-4o-mini", api_key=api_key, temperature=0) model = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0, api_key=api_key) @tool def search_wiki(query: str, max_results: int = 2) -> str: """ Searches Wikipedia for the given query and returns a maximum of 'max_results' relevant article summaries, titles, and URLs. Args: query (str): The search query for Wikipedia. max_results (int): The maximum number of search results to retrieve (default is 3). Returns: str: A JSON string containing a list of dictionaries, where each dictionary represents a Wikipedia article with its title, summary, and URL. Returns an empty list if no results are found or an error occurs. """ language_code = 'en' headers={'User-Agent': 'LangGraphAgent/1.0 (dwrigley@opensourceconnections.com)'} base_url = 'https://api.wikimedia.org/core/v1/wikipedia/' endpoint = '/search/page' url = base_url + language_code + endpoint parameters = {'q': query, 'limit': max_results} response = requests.get(url, headers=headers, params=parameters) response = json.loads(response.text) return json.dumps(response, indent=2) tavily_search_tool = TavilySearch( max_results=5, topic="general", ) @tool def save_and_read_file(content: str, filename: Optional[str] = None) -> str: """ Save content to a file and return the path. Args: content (str): the content to save to the file filename (str, optional): the name of the file. If not provided, a random name file will be created. """ temp_dir = tempfile.gettempdir() if filename is None: temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir) filepath = temp_file.name else: filepath = os.path.join(temp_dir, filename) with open(filepath, "w") as f: f.write(content) return f"File saved to {filepath}. You can read this file to process its contents." @tool def download_file_from_url(url: str, filename: Optional[str] = None) -> str: """ Download a file from a URL and save it to a temporary location. Args: url (str): the URL of the file to download. filename (str, optional): the name of the file. If not provided, a random name file will be created. """ try: # Parse URL to get filename if not provided if not filename: path = urlparse(url).path filename = os.path.basename(path) if not filename: filename = f"downloaded_{uuid.uuid4().hex[:8]}" # Create temporary file temp_dir = tempfile.gettempdir() filepath = os.path.join(temp_dir, filename) # Download the file response = requests.get(url, stream=True) response.raise_for_status() # Save the file with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return f"File downloaded to {filepath}. You can read this file to process its contents." except Exception as e: return f"Error downloading file: {str(e)}" @tool def sum(a: int, b:int) -> int: """Sum up two numbers. Args: a: first int b: second int """ return a + b @tool def extract_text_from_image(image_path: str) -> str: """ Extract text from an image using OCR library pytesseract (if available). Args: image_path (str): the path to the image file. """ try: # Open the image image = Image.open(image_path) # Extract text from the image text = pytesseract.image_to_string(image) return f"Extracted text from image:\n\n{text}" except Exception as e: return f"Error extracting text from image: {str(e)}" @tool def analyze_csv_file(file_path: str, query: str) -> str: """ Analyze a CSV file using pandas and answer a question about it. Args: file_path (str): the path to the CSV file. query (str): Question about the data """ try: # Read the CSV file df = pd.read_csv(file_path) # Run various analyses based on the query result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" result += f"Columns: {', '.join(df.columns)}\n\n" # Add summary statistics result += "Summary statistics:\n" result += str(df.describe()) return result except Exception as e: return f"Error analyzing CSV file: {str(e)}" @tool def analyze_excel_file(file_path: str, query: str) -> str: """ Analyze an Excel file using pandas and answer a question about it. Args: file_path (str): the path to the Excel file. query (str): Question about the data """ try: # Read the Excel file df = pd.read_excel(file_path) # Run various analyses based on the query result = ( f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" ) result += f"Columns: {', '.join(df.columns)}\n\n" # Add summary statistics result += "Summary statistics:\n" result += str(df.describe()) return result except Exception as e: return f"Error analyzing Excel file: {str(e)}" @tool def analyze_image(image_base64: str) -> Dict[str, Any]: """ Analyze basic properties of an image (size, mode, color analysis, thumbnail preview). Args: image_base64 (str): Base64 encoded image string Returns: Dictionary with analysis result """ try: img = decode_image(image_base64) width, height = img.size mode = img.mode if mode in ("RGB", "RGBA"): arr = np.array(img) avg_colors = arr.mean(axis=(0, 1)) dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])] brightness = avg_colors.mean() color_analysis = { "average_rgb": avg_colors.tolist(), "brightness": brightness, "dominant_color": dominant, } else: color_analysis = {"note": f"No color analysis for mode {mode}"} thumbnail = img.copy() thumbnail.thumbnail((100, 100)) thumb_path = save_image(thumbnail, "thumbnails") thumbnail_base64 = encode_image(thumb_path) return { "dimensions": (width, height), "mode": mode, "color_analysis": color_analysis, "thumbnail": thumbnail_base64, } except Exception as e: return {"error": str(e)} @tool def transform_image( image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: """ Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale. Args: image_base64 (str): Base64 encoded input image operation (str): Transformation operation params (Dict[str, Any], optional): Parameters for the operation Returns: Dictionary with transformed image (base64) """ try: img = decode_image(image_base64) params = params or {} if operation == "resize": img = img.resize( ( params.get("width", img.width // 2), params.get("height", img.height // 2), ) ) elif operation == "rotate": img = img.rotate(params.get("angle", 90), expand=True) elif operation == "crop": img = img.crop( ( params.get("left", 0), params.get("top", 0), params.get("right", img.width), params.get("bottom", img.height), ) ) elif operation == "flip": if params.get("direction", "horizontal") == "horizontal": img = img.transpose(Image.FLIP_LEFT_RIGHT) else: img = img.transpose(Image.FLIP_TOP_BOTTOM) elif operation == "adjust_brightness": img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5)) elif operation == "adjust_contrast": img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5)) elif operation == "blur": img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2))) elif operation == "sharpen": img = img.filter(ImageFilter.SHARPEN) elif operation == "grayscale": img = img.convert("L") else: return {"error": f"Unknown operation: {operation}"} result_path = save_image(img) result_base64 = encode_image(result_path) return {"transformed_image": result_base64} except Exception as e: return {"error": str(e)} tools = [ tavily_search_tool, search_wiki, save_and_read_file, transform_image, analyze_image, analyze_excel_file, analyze_csv_file, extract_text_from_image, download_file_from_url ] def build_graph(): """Build the graph""" # Bind tools to LLM llm_with_tools = model.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test agent if __name__ == "__main__": question = "When was St. Thomas Aquinas born?" # Build the graph graph = build_graph() # Run the graph messages = [ SystemMessage( content=system_prompt ), HumanMessage( content=question )] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()