Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 12,040 Bytes
			
			| 8aad0a5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
# reference: https://github.com/lifeiteng/vall-e
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
import os
import traceback
from typing import Dict, List
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader, Dataset
version = os.environ.get("version", None)
from text import cleaned_text_to_sequence
# from config import exp_dir
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
    seq = sequences[0]
    ndim = seq.ndim
    if axis < 0:
        axis += ndim
    dtype = seq.dtype
    pad_value = dtype.type(pad_value)
    seq_lengths = [seq.shape[axis] for seq in sequences]
    max_length = np.max(seq_lengths)
    padded_sequences = []
    for seq, length in zip(sequences, seq_lengths):
        padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
        padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
        padded_sequences.append(padded_seq)
    batch = np.stack(padded_sequences)
    return batch
class Text2SemanticDataset(Dataset):
    """dataset class for text tokens to semantic model training."""
    def __init__(
        self,
        phoneme_path: str,
        semantic_path: str,
        max_sample: int = None,
        max_sec: int = 100,
        pad_val: int = 1024,
        # min value of phoneme/sec
        min_ps_ratio: int = 3,
        # max value of phoneme/sec
        max_ps_ratio: int = 25,
    ) -> None:
        super().__init__()
        self.semantic_data = pd.read_csv(
            semantic_path,
            delimiter="\t",
            encoding="utf-8",
        )
        # get dict
        self.path2 = phoneme_path  # "%s/2-name2text.txt"%exp_dir#phoneme_path
        self.path3 = "%s/3-bert" % (
            os.path.dirname(
                phoneme_path,
            )
        )  # "%s/3-bert"%exp_dir#bert_dir
        self.path6 = semantic_path  # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
        assert os.path.exists(self.path2)
        assert os.path.exists(self.path6)
        self.phoneme_data = {}
        with open(self.path2, "r", encoding="utf8") as f:
            lines = f.read().strip("\n").split("\n")
        for line in lines:
            tmp = line.split("\t")
            if len(tmp) != 4:
                continue
            self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
        # self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
        # pad for semantic tokens
        self.PAD: int = pad_val
        # self.hz = 25
        # with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
        # data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
        # self.hz=int(data[:-2])#
        self.hz = int(os.environ.get("hz", "25hz")[:-2])
        # max seconds of semantic token
        self.max_sec = max_sec
        self.min_ps_ratio = min_ps_ratio
        self.max_ps_ratio = max_ps_ratio
        if max_sample is not None:
            self.semantic_data = self.semantic_data[:max_sample]
        # {idx: (semantic, phoneme)}
        # semantic list, phoneme list
        self.semantic_phoneme = []
        self.item_names = []
        self.inited = False
        if not self.inited:
            # 调用初始化函数
            self.init_batch()
            self.inited = True
            del self.semantic_data
            del self.phoneme_data
        # self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
        # self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
    def init_batch(self):
        semantic_data_len = len(self.semantic_data)
        phoneme_data_len = len(self.phoneme_data.keys())
        print("semantic_data_len:", semantic_data_len)
        print("phoneme_data_len:", phoneme_data_len)
        print(self.semantic_data)
        idx = 0
        num_not_in = 0
        num_deleted_bigger = 0
        num_deleted_ps = 0
        for i in range(semantic_data_len):
            # 先依次遍历
            # get str
            item_name = self.semantic_data.iloc[i, 0]
            # print(self.phoneme_data)
            try:
                phoneme, word2ph, text = self.phoneme_data[item_name]
            except Exception:
                traceback.print_exc()
                # print(f"{item_name} not in self.phoneme_data !")
                num_not_in += 1
                continue
            semantic_str = self.semantic_data.iloc[i, 1]
            # get token list
            semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
            # (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
            # 过滤掉太长的样本
            if (
                len(semantic_ids) > self.max_sec * self.hz
            ):  #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
                num_deleted_bigger += 1
                continue
            # (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
            phoneme = phoneme.split(" ")
            try:
                phoneme_ids = cleaned_text_to_sequence(phoneme, version)
            except:
                traceback.print_exc()
                # print(f"{item_name} not in self.phoneme_data !")
                num_not_in += 1
                continue
            # if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
            if len(phoneme_ids) > self.max_sec * self.hz / 2.5:  ###########2:改为恒定限制为semantic/2.5就行
                num_deleted_ps += 1
                continue
            # if len(semantic_ids) > 1000:###########3
            #     num_deleted_bigger += 1
            #     continue
            ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
            if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio:  ##########4#3~25#每秒多少个phone
                num_deleted_ps += 1
                # print(item_name)
                continue
            self.semantic_phoneme.append((semantic_ids, phoneme_ids))
            idx += 1
            self.item_names.append(item_name)
        min_num = 100  # 20直接不补#30补了也不存ckpt
        leng = len(self.semantic_phoneme)
        if leng < min_num:
            tmp1 = self.semantic_phoneme
            tmp2 = self.item_names
            self.semantic_phoneme = []
            self.item_names = []
            for _ in range(max(2, int(min_num / leng))):
                self.semantic_phoneme += tmp1
                self.item_names += tmp2
        if num_not_in > 0:
            print(f"there are {num_not_in} semantic datas not in phoneme datas")
        if num_deleted_bigger > 0:
            print(
                f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds",
            )
        if num_deleted_ps > 0:
            # 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
            print(
                f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}",
            )
        """
        there are 31 semantic datas not in phoneme datas
        deleted 34 audios who's duration are bigger than 54 seconds
        deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
        dataset.__len__(): 366463
        """
        # 345410 for LibriTTS
        print("dataset.__len__():", self.__len__())
    def __get_item_names__(self) -> List[str]:
        return self.item_names
    def __len__(self) -> int:
        return len(self.semantic_phoneme)
    def __getitem__(self, idx: int) -> Dict:
        semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
        item_name = self.item_names[idx]
        phoneme_ids_len = len(phoneme_ids)
        # semantic tokens target
        semantic_ids_len = len(semantic_ids)
        flag = 0
        path_bert = "%s/%s.pt" % (self.path3, item_name)
        if os.path.exists(path_bert) == True:
            bert_feature = torch.load(path_bert, map_location="cpu")
        else:
            flag = 1
        if flag == 1:
            # bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
            bert_feature = None
        else:
            assert bert_feature.shape[-1] == len(phoneme_ids)
        return {
            "idx": idx,
            "phoneme_ids": phoneme_ids,
            "phoneme_ids_len": phoneme_ids_len,
            "semantic_ids": semantic_ids,
            "semantic_ids_len": semantic_ids_len,
            "bert_feature": bert_feature,
        }
    def get_sample_length(self, idx: int):
        semantic_ids = self.semantic_phoneme[idx][0]
        sec = 1.0 * len(semantic_ids) / self.hz
        return sec
    def collate(self, examples: List[Dict]) -> Dict:
        sample_index: List[int] = []
        phoneme_ids: List[torch.Tensor] = []
        phoneme_ids_lens: List[int] = []
        semantic_ids: List[torch.Tensor] = []
        semantic_ids_lens: List[int] = []
        # return
        for item in examples:
            sample_index.append(item["idx"])
            phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
            semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
            phoneme_ids_lens.append(item["phoneme_ids_len"])
            semantic_ids_lens.append(item["semantic_ids_len"])
        # pad 0
        phoneme_ids = batch_sequences(phoneme_ids)
        semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
        # # convert each batch to torch.tensor
        phoneme_ids = torch.tensor(phoneme_ids)
        semantic_ids = torch.tensor(semantic_ids)
        phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
        semantic_ids_lens = torch.tensor(semantic_ids_lens)
        bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
        bert_padded.zero_()
        for idx, item in enumerate(examples):
            bert = item["bert_feature"]
            if bert != None:
                bert_padded[idx, :, : bert.shape[-1]] = bert
        return {
            # List[int]
            "ids": sample_index,
            # torch.Tensor (B, max_phoneme_length)
            "phoneme_ids": phoneme_ids,
            # torch.Tensor (B)
            "phoneme_ids_len": phoneme_ids_lens,
            # torch.Tensor (B, max_semantic_ids_length)
            "semantic_ids": semantic_ids,
            # torch.Tensor (B)
            "semantic_ids_len": semantic_ids_lens,
            # torch.Tensor (B, 1024, max_phoneme_length)
            "bert_feature": bert_padded,
        }
if __name__ == "__main__":
    root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
    dataset = Text2SemanticDataset(
        phoneme_path=root_dir + "phoneme_train.npy",
        semantic_path=root_dir + "semantic_train.tsv",
    )
    batch_size = 12
    dataloader = DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=dataset.collate,
        shuffle=False,
    )
    for i, batch in enumerate(dataloader):
        if i % 1000 == 0:
            print(i)
        # if i == 0:
        #     print('batch["ids"]:', batch["ids"])
        # print('batch["phoneme_ids"]:', batch["phoneme_ids"],
        #       batch["phoneme_ids"].shape)
        # print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
        #       batch["phoneme_ids_len"].shape)
        # print('batch["semantic_ids"]:', batch["semantic_ids"],
        #       batch["semantic_ids"].shape)
        # print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
        #       batch["semantic_ids_len"].shape)
 |