Spaces:
Runtime error
Runtime error
File size: 20,417 Bytes
8aad0a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
<div align="center">
<h1>GPT-SoVITS-WebUI</h1>
Güçlü Birkaç Örnekli Ses Dönüştürme ve Metinden Konuşmaya Web Arayüzü.<br><br>
[](https://github.com/RVC-Boss/GPT-SoVITS)
<a href="https://trendshift.io/repositories/7033" target="_blank"><img src="https://trendshift.io/api/badge/repositories/7033" alt="RVC-Boss%2FGPT-SoVITS | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<!-- img src="https://counter.seku.su/cmoe?name=gptsovits&theme=r34" /><br> -->
[](https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/colab_webui.ipynb)
[](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
[](https://huggingface.co/spaces/lj1995/GPT-SoVITS-v2)
[](https://discord.gg/dnrgs5GHfG)
[**English**](../../README.md) | [**中文简体**](../cn/README.md) | [**日本語**](../ja/README.md) | [**한국어**](../ko/README.md) | **Türkçe**
</div>
---
## Özellikler:
1. **Sıfır Örnekli Metinden Konuşmaya:** 5 saniyelik bir vokal örneği girin ve anında metinden konuşmaya dönüşümünü deneyimleyin.
2. **Birkaç Örnekli Metinden Konuşmaya:** Daha iyi ses benzerliği ve gerçekçiliği için modeli yalnızca 1 dakikalık eğitim verisiyle ince ayarlayın.
3. **Çapraz Dil Desteği:** Eğitim veri setinden farklı dillerde çıkarım, şu anda İngilizce, Japonca, Çince, Kantonca ve Koreceyi destekliyor.
4. **Web Arayüzü Araçları:** Entegre araçlar arasında vokal eşliğinde ayırma, otomatik eğitim seti segmentasyonu, Çince ASR ve metin etiketleme bulunur ve yeni başlayanların eğitim veri setleri ve GPT/SoVITS modelleri oluşturmalarına yardımcı olur.
**[Demo videomuzu](https://www.bilibili.com/video/BV12g4y1m7Uw) buradan izleyin!**
Görünmeyen konuşmacılar birkaç örnekli ince ayar demosu:
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
**Kullanıcı Kılavuzu: [简体中文](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e) | [English](https://rentry.co/GPT-SoVITS-guide#/)**
## Kurulum
### Test Edilmiş Ortamlar
| Python Version | PyTorch Version | Device |
| -------------- | ---------------- | ------------- |
| Python 3.10 | PyTorch 2.5.1 | CUDA 12.4 |
| Python 3.11 | PyTorch 2.5.1 | CUDA 12.4 |
| Python 3.11 | PyTorch 2.7.0 | CUDA 12.8 |
| Python 3.9 | PyTorch 2.8.0dev | CUDA 12.8 |
| Python 3.9 | PyTorch 2.5.1 | Apple silicon |
| Python 3.11 | PyTorch 2.7.0 | Apple silicon |
| Python 3.9 | PyTorch 2.2.2 | CPU |
### Windows
Eğer bir Windows kullanıcısıysanız (win>=10 ile test edilmiştir), [entegre paketi indirin](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-v3lora-20250228.7z?download=true) ve _go-webui.bat_ dosyasına çift tıklayarak GPT-SoVITS-WebUI'yi başlatın.
### Linux
```bash
conda create -n GPTSoVits python=3.10
conda activate GPTSoVits
bash install.sh --device <CU126|CU128|ROCM|CPU> --source <HF|HF-Mirror|ModelScope> [--download-uvr5]
```
### macOS
**Not: Mac'lerde GPU'larla eğitilen modeller, diğer cihazlarda eğitilenlere göre önemli ölçüde daha düşük kalitede sonuç verir, bu nedenle geçici olarak CPU'lar kullanıyoruz.**
Aşağıdaki komutları çalıştırarak programı yükleyin:
```bash
conda create -n GPTSoVits python=3.10
conda activate GPTSoVits
bash install.sh --device <MPS|CPU> --source <HF|HF-Mirror|ModelScope> [--download-uvr5]
```
### El ile Yükleme
#### Bağımlılıkları Yükleme
```bash
conda create -n GPTSoVits python=3.10
conda activate GPTSoVits
pip install -r extra-req.txt --no-deps
pip install -r requirements.txt
```
#### FFmpeg'i Yükleme
##### Conda Kullanıcıları
```bash
conda activate GPTSoVits
conda install ffmpeg
```
##### Ubuntu/Debian Kullanıcıları
```bash
sudo apt install ffmpeg
sudo apt install libsox-dev
```
##### Windows Kullanıcıları
[ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) ve [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) dosyalarını indirin ve GPT-SoVITS kök dizinine yerleştirin
[Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) ortamını yükleyin
##### MacOS Kullanıcıları
```bash
brew install ffmpeg
```
### GPT-SoVITS Çalıştırma (Docker Kullanarak)
#### Docker İmajı Seçimi
Kod tabanı hızla geliştiği halde Docker imajları daha yavaş yayınlandığı için lütfen şu adımları izleyin:
- En güncel kullanılabilir imaj etiketlerini görmek için [Docker Hub](https://hub.docker.com/r/xxxxrt666/gpt-sovits) adresini kontrol edin
- Ortamınıza uygun bir imaj etiketi seçin
- `Lite`, Docker imajında ASR modelleri ve UVR5 modellerinin bulunmadığı anlamına gelir. UVR5 modellerini manuel olarak indirebilirsiniz; ASR modelleri ise gerektiğinde program tarafından otomatik olarak indirilir
- Docker Compose sırasında, uygun mimariye (amd64 veya arm64) ait imaj otomatik olarak indirilir
- Opsiyonel: En güncel değişiklikleri almak için, sağlanan Dockerfile ile yerel olarak imajı kendiniz oluşturabilirsiniz
#### Ortam Değişkenleri
- `is_half`: Yarı hassasiyet (fp16) kullanımını kontrol eder. GPU’nuz destekliyorsa, belleği azaltmak için `true` olarak ayarlayın.
#### Paylaşılan Bellek Yapılandırması
Windows (Docker Desktop) ortamında, varsayılan paylaşılan bellek boyutu düşüktür ve bu beklenmedik hatalara neden olabilir. Sistem belleğinize göre Docker Compose dosyasındaki `shm_size` değerini (örneğin `16g`) artırmanız önerilir.
#### Servis Seçimi
`docker-compose.yaml` dosyasında iki tür servis tanımlanmıştır:
- `GPT-SoVITS-CU126` ve `GPT-SoVITS-CU128`: Tüm özellikleri içeren tam sürüm.
- `GPT-SoVITS-CU126-Lite` ve `GPT-SoVITS-CU128-Lite`: Daha az bağımlılığa ve sınırlı işlevselliğe sahip hafif sürüm.
Belirli bir servisi Docker Compose ile çalıştırmak için şu komutu kullanın:
```bash
docker compose run --service-ports <GPT-SoVITS-CU126-Lite|GPT-SoVITS-CU128-Lite|GPT-SoVITS-CU126|GPT-SoVITS-CU128>
```
#### Docker İmajını Yerel Olarak Oluşturma
Docker imajını kendiniz oluşturmak isterseniz şu komutu kullanın:
```bash
bash docker_build.sh --cuda <12.6|12.8> [--lite]
```
#### Çalışan Konteynere Erişim (Bash Shell)
Konteyner arka planda çalışırken, aşağıdaki komutla içine girebilirsiniz:
```bash
docker exec -it <GPT-SoVITS-CU126-Lite|GPT-SoVITS-CU128-Lite|GPT-SoVITS-CU126|GPT-SoVITS-CU128> bash
```
## Önceden Eğitilmiş Modeller
**Eğer `install.sh` başarıyla çalıştırılırsa, No.1,2,3 adımını atlayabilirsiniz.**
1. [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) üzerinden önceden eğitilmiş modelleri indirip `GPT_SoVITS/pretrained_models` dizinine yerleştirin.
2. [G2PWModel.zip(HF)](https://huggingface.co/XXXXRT/GPT-SoVITS-Pretrained/resolve/main/G2PWModel.zip)| [G2PWModel.zip(ModelScope)](https://www.modelscope.cn/models/XXXXRT/GPT-SoVITS-Pretrained/resolve/master/G2PWModel.zip) üzerinden modeli indirip sıkıştırmayı açın ve `G2PWModel` olarak yeniden adlandırın, ardından `GPT_SoVITS/text` dizinine yerleştirin. (Sadece Çince TTS için)
3. UVR5 (Vokal/Enstrümantal Ayrımı & Yankı Giderme) için, [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) üzerinden modelleri indirip `tools/uvr5/uvr5_weights` dizinine yerleştirin.
- UVR5'te bs_roformer veya mel_band_roformer modellerini kullanıyorsanız, modeli ve ilgili yapılandırma dosyasını manuel olarak indirip `tools/UVR5/UVR5_weights` klasörüne yerleştirebilirsiniz. **Model dosyası ve yapılandırma dosyasının adı, uzantı dışında aynı olmalıdır**. Ayrıca, model ve yapılandırma dosyasının adlarında **"roformer"** kelimesi yer almalıdır, böylece roformer sınıfındaki bir model olarak tanınır.
- Model adı ve yapılandırma dosyası adı içinde **doğrudan model tipini belirtmek önerilir**. Örneğin: mel_mand_roformer, bs_roformer. Belirtilmezse, yapılandırma dosyasından özellikler karşılaştırılarak model tipi belirlenir. Örneğin, `bs_roformer_ep_368_sdr_12.9628.ckpt` modeli ve karşılık gelen yapılandırma dosyası `bs_roformer_ep_368_sdr_12.9628.yaml` bir çifttir. Aynı şekilde, `kim_mel_band_roformer.ckpt` ve `kim_mel_band_roformer.yaml` da bir çifttir.
4. Çince ASR için, [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files) ve [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) üzerinden modelleri indirip `tools/asr/models` dizinine yerleştirin.
5. İngilizce veya Japonca ASR için, [Faster Whisper Large V3](https://huggingface.co/Systran/faster-whisper-large-v3) üzerinden modeli indirip `tools/asr/models` dizinine yerleştirin. Ayrıca, [diğer modeller](https://huggingface.co/Systran) benzer bir etki yaratabilir ve daha az disk alanı kaplayabilir.
## Veri Seti Formatı
TTS açıklama .list dosya formatı:
```
vocal_path|speaker_name|language|text
```
Dil sözlüğü:
- 'zh': Çince
- 'ja': Japonca
- 'en': İngilizce
- 'ko': Korece
- 'yue': Kantonca
Örnek:
```
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
```
## İnce Ayar ve Çıkarım
### WebUI'yi Açın
#### Entegre Paket Kullanıcıları
`go-webui.bat` dosyasına çift tıklayın veya `go-webui.ps1` kullanın.
V1'e geçmek istiyorsanız, `go-webui-v1.bat` dosyasına çift tıklayın veya `go-webui-v1.ps1` kullanın.
#### Diğerleri
```bash
python webui.py <dil(isteğe bağlı)>
```
V1'e geçmek istiyorsanız,
```bash
python webui.py v1 <dil(isteğe bağlı)>
```
veya WebUI'de manuel olarak sürüm değiştirin.
### İnce Ayar
#### Yol Otomatik Doldurma artık destekleniyor
1. Ses yolunu doldurun
2. Sesi küçük parçalara ayırın
3. Gürültü azaltma (isteğe bağlı)
4. ASR
5. ASR transkripsiyonlarını düzeltin
6. Bir sonraki sekmeye geçin ve modeli ince ayar yapın
### Çıkarım WebUI'sini Açın
#### Entegre Paket Kullanıcıları
`go-webui-v2.bat` dosyasına çift tıklayın veya `go-webui-v2.ps1` kullanın, ardından çıkarım webui'sini `1-GPT-SoVITS-TTS/1C-inference` adresinde açın.
#### Diğerleri
```bash
python GPT_SoVITS/inference_webui.py <dil(isteğe bağlı)>
```
VEYA
```bash
python webui.py
```
ardından çıkarım webui'sini `1-GPT-SoVITS-TTS/1C-inference` adresinde açın.
## V2 Sürüm Notları
Yeni Özellikler:
1. Korece ve Kantonca destekler
2. Optimize edilmiş metin ön yüzü
3. Önceden eğitilmiş model 2k saatten 5k saate kadar genişletildi
4. Düşük kaliteli referans sesler için geliştirilmiş sentez kalitesi
[detaylar burada](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
V1 ortamından V2'yi kullanmak için:
1. `pip install -r requirements.txt` ile bazı paketleri güncelleyin
2. github'dan en son kodları klonlayın.
3. [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained) adresinden v2 önceden eğitilmiş modelleri indirin ve bunları `GPT_SoVITS/pretrained_models/gsv-v2final-pretrained` dizinine yerleştirin.
Ek olarak Çince V2: [G2PWModel.zip(HF)](https://huggingface.co/XXXXRT/GPT-SoVITS-Pretrained/resolve/main/G2PWModel.zip)| [G2PWModel.zip(ModelScope)](https://www.modelscope.cn/models/XXXXRT/GPT-SoVITS-Pretrained/resolve/master/G2PWModel.zip) (G2PW modellerini indirip, zipten çıkarıp, `G2PWModel` olarak yeniden adlandırıp `GPT_SoVITS/text` dizinine yerleştirin.)
## V3 Sürüm Notları
Yeni Özellikler:
1. **Tını benzerliği** daha yüksek olup, hedef konuşmacıyı yakınsamak için daha az eğitim verisi gerekmektedir (tını benzerliği, base model doğrudan kullanılacak şekilde fine-tuning yapılmadan önemli ölçüde iyileştirilmiştir).
2. GPT modeli daha **kararlı** hale geldi, tekrarlar ve atlamalar azaldı ve **daha zengin duygusal ifadeler** ile konuşma üretmek daha kolay hale geldi.
[daha fazla detay](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v3%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
V2 ortamında V3 kullanımı:
1. `pip install -r requirements.txt` ile bazı paketleri güncelleyin.
2. GitHub'dan en son kodları klonlayın.
3. [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) üzerinden v3 önceden eğitilmiş modellerini (s1v3.ckpt, s2Gv3.pth ve models--nvidia--bigvgan_v2_24khz_100band_256x klasörünü) indirin ve `GPT_SoVITS/pretrained_models` dizinine yerleştirin.
ek: Ses Süper Çözünürlük modeli için [nasıl indirileceği](../../tools/AP_BWE_main/24kto48k/readme.txt) hakkında bilgi alabilirsiniz.
## V4 Sürüm Notları
Yeni Özellikler:
1. **V4, V3'te görülen non-integer upsample işleminden kaynaklanan metalik ses sorununu düzeltti ve sesin boğuklaşmasını önlemek için doğrudan 48kHz ses çıktısı sunar (V3 sadece 24kHz destekler)**. Yazar, V4'ün V3'ün yerine geçebileceğini belirtmiştir ancak daha fazla test yapılması gerekmektedir.
[Daha fazla bilgi](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v3v4%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
V1/V2/V3 ortamından V4'e geçiş:
1. Bazı bağımlılıkları güncellemek için `pip install -r requirements.txt` komutunu çalıştırın.
2. GitHub'dan en son kodları klonlayın.
3. [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) üzerinden V4 ön eğitilmiş modelleri indirin (`gsv-v4-pretrained/s2v4.ckpt` ve `gsv-v4-pretrained/vocoder.pth`) ve bunları `GPT_SoVITS/pretrained_models` dizinine koyun.
## V2Pro Sürüm Notları
Yeni Özellikler:
1. **V2 ile karşılaştırıldığında biraz daha yüksek VRAM kullanımı sağlar ancak V4'ten daha iyi performans gösterir; aynı donanım maliyeti ve hız avantajını korur**.
[Daha fazla bilgi](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90features-(%E5%90%84%E7%89%88%E6%9C%AC%E7%89%B9%E6%80%A7))
2. V1/V2 ve V2Pro serisi benzer özelliklere sahipken, V3/V4 de yakın işlevleri paylaşır. Ortalama kalite düşük olan eğitim setleriyle V1/V2/V2Pro iyi sonuçlar verebilir ama V3/V4 veremez. Ayrıca, V3/V4’ün ürettiği ses tonu genel eğitim setine değil, referans ses örneğine daha çok benzemektedir.
V1/V2/V3/V4 ortamından V2Pro'ya geçiş:
1. Bazı bağımlılıkları güncellemek için `pip install -r requirements.txt` komutunu çalıştırın.
2. GitHub'dan en son kodları klonlayın.
3. [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) üzerinden V2Pro ön eğitilmiş modelleri indirin (`v2Pro/s2Dv2Pro.pth`, `v2Pro/s2Gv2Pro.pth`, `v2Pro/s2Dv2ProPlus.pth`, `v2Pro/s2Gv2ProPlus.pth`, ve `sv/pretrained_eres2netv2w24s4ep4.ckpt`) ve bunları `GPT_SoVITS/pretrained_models` dizinine koyun.
## Yapılacaklar Listesi
- [x] **Yüksek Öncelikli:**
- [x] Japonca ve İngilizceye yerelleştirme.
- [x] Kullanıcı kılavuzu.
- [x] Japonca ve İngilizce veri seti ince ayar eğitimi.
- [ ] **Özellikler:**
- [x] Sıfır örnekli ses dönüştürme (5s) / birkaç örnekli ses dönüştürme (1dk).
- [x] Metinden konuşmaya konuşma hızı kontrolü.
- [ ] ~~Gelişmiş metinden konuşmaya duygu kontrolü.~~
- [ ] SoVITS token girdilerini kelime dağarcığı olasılık dağılımına değiştirme denemesi.
- [x] İngilizce ve Japonca metin ön ucunu iyileştirme.
- [ ] Küçük ve büyük boyutlu metinden konuşmaya modelleri geliştirme.
- [x] Colab betikleri.
- [ ] Eğitim veri setini genişletmeyi dene (2k saat -> 10k saat).
- [x] daha iyi sovits temel modeli (geliştirilmiş ses kalitesi)
- [ ] model karışımı
## (Ekstra) Komut satırından çalıştırma yöntemi
UVR5 için Web Arayüzünü açmak için komut satırını kullanın
```bash
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
```
<!-- Bir tarayıcı açamıyorsanız, UVR işleme için aşağıdaki formatı izleyin,Bu ses işleme için mdxnet kullanıyor
```
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
``` -->
Veri setinin ses segmentasyonu komut satırı kullanılarak bu şekilde yapılır
```bash
python audio_slicer.py \
--input_path "<orijinal_ses_dosyası_veya_dizininin_yolu>" \
--output_root "<alt_bölümlere_ayrılmış_ses_kliplerinin_kaydedileceği_dizin>" \
--threshold <ses_eşiği> \
--min_length <her_bir_alt_klibin_minimum_süresi> \
--min_interval <bitişik_alt_klipler_arasındaki_en_kısa_zaman_aralığı>
--hop_size <ses_eğrisini_hesaplamak_için_adım_boyutu>
```
Veri seti ASR işleme komut satırı kullanılarak bu şekilde yapılır (Yalnızca Çince)
```bash
python tools/asr/funasr_asr.py -i <girdi> -o <çıktı>
```
ASR işleme Faster_Whisper aracılığıyla gerçekleştirilir (Çince dışındaki ASR işaretleme)
(İlerleme çubukları yok, GPU performansı zaman gecikmelerine neden olabilir)
```bash
python ./tools/asr/fasterwhisper_asr.py -i <girdi> -o <çıktı> -l <dil>
```
Özel bir liste kaydetme yolu etkinleştirildi
## Katkı Verenler
Özellikle aşağıdaki projelere ve katkıda bulunanlara teşekkür ederiz:
### Teorik Araştırma
- [ar-vits](https://github.com/innnky/ar-vits)
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
- [vits](https://github.com/jaywalnut310/vits)
- [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
- [contentvec](https://github.com/auspicious3000/contentvec/)
- [hifi-gan](https://github.com/jik876/hifi-gan)
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
- [f5-TTS](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py)
- [shortcut flow matching](https://github.com/kvfrans/shortcut-models/blob/main/targets_shortcut.py)
### Önceden Eğitilmiş Modeller
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
- [BigVGAN](https://github.com/NVIDIA/BigVGAN)
- [eresnetv2](https://modelscope.cn/models/iic/speech_eres2netv2w24s4ep4_sv_zh-cn_16k-common)
### Tahmin İçin Metin Ön Ucu
- [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
- [split-lang](https://github.com/DoodleBears/split-lang)
- [g2pW](https://github.com/GitYCC/g2pW)
- [pypinyin-g2pW](https://github.com/mozillazg/pypinyin-g2pW)
- [paddlespeech g2pw](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw)
### WebUI Araçları
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [SubFix](https://github.com/cronrpc/SubFix)
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
- [gradio](https://github.com/gradio-app/gradio)
- [faster-whisper](https://github.com/SYSTRAN/faster-whisper)
- [FunASR](https://github.com/alibaba-damo-academy/FunASR)
- [AP-BWE](https://github.com/yxlu-0102/AP-BWE)
@Naozumi520'ye Kantonca eğitim setini sağladığı ve Kantonca ile ilgili bilgiler konusunda rehberlik ettiği için minnettarım.
## Tüm katkıda bulunanlara çabaları için teşekkürler
<a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
</a>
|