Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import pdb | |
| import signal | |
| import sys | |
| from time import time as ttime | |
| import torch | |
| import librosa | |
| import soundfile as sf | |
| from fastapi import FastAPI, Request, HTTPException | |
| from fastapi.responses import StreamingResponse | |
| import uvicorn | |
| from transformers import AutoModelForMaskedLM, AutoTokenizer | |
| import numpy as np | |
| from feature_extractor import cnhubert | |
| from io import BytesIO | |
| from module.models import SynthesizerTrn | |
| from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
| from text import cleaned_text_to_sequence | |
| from text.cleaner import clean_text | |
| from module.mel_processing import spectrogram_torch | |
| from my_utils import load_audio | |
| import config as global_config | |
| g_config = global_config.Config() | |
| # AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu" | |
| parser = argparse.ArgumentParser(description="GPT-SoVITS api") | |
| parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径") | |
| parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径") | |
| parser.add_argument("-dr", "--default_refer_path", type=str, default="", | |
| help="默认参考音频路径, 请求缺少参考音频时调用") | |
| parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") | |
| parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") | |
| parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu") | |
| parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880") | |
| parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") | |
| parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度") | |
| parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度") | |
| # bool值的用法为 `python ./api.py -fp ...` | |
| # 此时 full_precision==True, half_precision==False | |
| parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") | |
| parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") | |
| args = parser.parse_args() | |
| sovits_path = args.sovits_path | |
| gpt_path = args.gpt_path | |
| default_refer_path = args.default_refer_path | |
| default_refer_text = args.default_refer_text | |
| default_refer_language = args.default_refer_language | |
| has_preset = False | |
| device = args.device | |
| port = args.port | |
| host = args.bind_addr | |
| if sovits_path == "": | |
| sovits_path = g_config.pretrained_sovits_path | |
| print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}") | |
| if gpt_path == "": | |
| gpt_path = g_config.pretrained_gpt_path | |
| print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}") | |
| # 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用 | |
| if default_refer_path == "" or default_refer_text == "" or default_refer_language == "": | |
| default_refer_path, default_refer_text, default_refer_language = "", "", "" | |
| print("[INFO] 未指定默认参考音频") | |
| has_preset = False | |
| else: | |
| print(f"[INFO] 默认参考音频路径: {default_refer_path}") | |
| print(f"[INFO] 默认参考音频文本: {default_refer_text}") | |
| print(f"[INFO] 默认参考音频语种: {default_refer_language}") | |
| has_preset = True | |
| is_half = g_config.is_half | |
| if args.full_precision: | |
| is_half = False | |
| if args.half_precision: | |
| is_half = True | |
| if args.full_precision and args.half_precision: | |
| is_half = g_config.is_half # 炒饭fallback | |
| print(f"[INFO] 半精: {is_half}") | |
| cnhubert_base_path = args.hubert_path | |
| bert_path = args.bert_path | |
| cnhubert.cnhubert_base_path = cnhubert_base_path | |
| tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
| bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
| if is_half: | |
| bert_model = bert_model.half().to(device) | |
| else: | |
| bert_model = bert_model.to(device) | |
| def get_bert_feature(text, word2ph): | |
| with torch.no_grad(): | |
| inputs = tokenizer(text, return_tensors="pt") | |
| for i in inputs: | |
| inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model | |
| res = bert_model(**inputs, output_hidden_states=True) | |
| res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
| assert len(word2ph) == len(text) | |
| phone_level_feature = [] | |
| for i in range(len(word2ph)): | |
| repeat_feature = res[i].repeat(word2ph[i], 1) | |
| phone_level_feature.append(repeat_feature) | |
| phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
| # if(is_half==True):phone_level_feature=phone_level_feature.half() | |
| return phone_level_feature.T | |
| n_semantic = 1024 | |
| dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False) | |
| hps = dict_s2["config"] | |
| print(hps) | |
| class DictToAttrRecursive(dict): | |
| def __init__(self, input_dict): | |
| super().__init__(input_dict) | |
| for key, value in input_dict.items(): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| self[key] = value | |
| setattr(self, key, value) | |
| def __getattr__(self, item): | |
| try: | |
| return self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| def __setattr__(self, key, value): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| super(DictToAttrRecursive, self).__setitem__(key, value) | |
| super().__setattr__(key, value) | |
| def __delattr__(self, item): | |
| try: | |
| del self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| hps = DictToAttrRecursive(hps) | |
| hps.model.semantic_frame_rate = "25hz" | |
| dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False) | |
| config = dict_s1["config"] | |
| ssl_model = cnhubert.get_model() | |
| if is_half: | |
| ssl_model = ssl_model.half().to(device) | |
| else: | |
| ssl_model = ssl_model.to(device) | |
| vq_model = SynthesizerTrn( | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model) | |
| if is_half: | |
| vq_model = vq_model.half().to(device) | |
| else: | |
| vq_model = vq_model.to(device) | |
| vq_model.eval() | |
| print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
| hz = 50 | |
| max_sec = config['data']['max_sec'] | |
| t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) | |
| t2s_model.load_state_dict(dict_s1["weight"]) | |
| if is_half: | |
| t2s_model = t2s_model.half() | |
| t2s_model = t2s_model.to(device) | |
| t2s_model.eval() | |
| total = sum([param.nelement() for param in t2s_model.parameters()]) | |
| print("Number of parameter: %.2fM" % (total / 1e6)) | |
| def get_spepc(hps, filename): | |
| audio = load_audio(filename, int(hps.data.sampling_rate)) | |
| audio = torch.FloatTensor(audio) | |
| audio_norm = audio | |
| audio_norm = audio_norm.unsqueeze(0) | |
| spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, | |
| hps.data.win_length, center=False) | |
| return spec | |
| dict_language = { | |
| "中文": "zh", | |
| "英文": "en", | |
| "日文": "ja", | |
| "ZH": "zh", | |
| "EN": "en", | |
| "JA": "ja", | |
| "zh": "zh", | |
| "en": "en", | |
| "ja": "ja" | |
| } | |
| def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): | |
| t0 = ttime() | |
| prompt_text = prompt_text.strip("\n") | |
| prompt_language, text = prompt_language, text.strip("\n") | |
| zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) | |
| with torch.no_grad(): | |
| wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
| wav16k = torch.from_numpy(wav16k) | |
| zero_wav_torch = torch.from_numpy(zero_wav) | |
| if (is_half == True): | |
| wav16k = wav16k.half().to(device) | |
| zero_wav_torch = zero_wav_torch.half().to(device) | |
| else: | |
| wav16k = wav16k.to(device) | |
| zero_wav_torch = zero_wav_torch.to(device) | |
| wav16k=torch.cat([wav16k,zero_wav_torch]) | |
| ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() | |
| codes = vq_model.extract_latent(ssl_content) | |
| prompt_semantic = codes[0, 0] | |
| t1 = ttime() | |
| prompt_language = dict_language[prompt_language] | |
| text_language = dict_language[text_language] | |
| phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) | |
| phones1 = cleaned_text_to_sequence(phones1) | |
| texts = text.split("\n") | |
| audio_opt = [] | |
| for text in texts: | |
| phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
| phones2 = cleaned_text_to_sequence(phones2) | |
| if (prompt_language == "zh"): | |
| bert1 = get_bert_feature(norm_text1, word2ph1).to(device) | |
| else: | |
| bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to( | |
| device) | |
| if (text_language == "zh"): | |
| bert2 = get_bert_feature(norm_text2, word2ph2).to(device) | |
| else: | |
| bert2 = torch.zeros((1024, len(phones2))).to(bert1) | |
| bert = torch.cat([bert1, bert2], 1) | |
| all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
| bert = bert.to(device).unsqueeze(0) | |
| all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
| prompt = prompt_semantic.unsqueeze(0).to(device) | |
| t2 = ttime() | |
| with torch.no_grad(): | |
| # pred_semantic = t2s_model.model.infer( | |
| pred_semantic, idx = t2s_model.model.infer_panel( | |
| all_phoneme_ids, | |
| all_phoneme_len, | |
| prompt, | |
| bert, | |
| # prompt_phone_len=ph_offset, | |
| top_k=config['inference']['top_k'], | |
| early_stop_num=hz * max_sec) | |
| t3 = ttime() | |
| # print(pred_semantic.shape,idx) | |
| pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 | |
| refer = get_spepc(hps, ref_wav_path) # .to(device) | |
| if (is_half == True): | |
| refer = refer.half().to(device) | |
| else: | |
| refer = refer.to(device) | |
| # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
| audio = \ | |
| vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), | |
| refer).detach().cpu().numpy()[ | |
| 0, 0] ###试试重建不带上prompt部分 | |
| audio_opt.append(audio) | |
| audio_opt.append(zero_wav) | |
| t4 = ttime() | |
| print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
| # yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
| return hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
| def get_tts_wavs(ref_wav_path, prompt_text, prompt_language, textss, text_language): | |
| t0 = ttime() | |
| prompt_text = prompt_text.strip("\n") | |
| zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) | |
| with torch.no_grad(): | |
| wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
| wav16k = torch.from_numpy(wav16k) | |
| zero_wav_torch = torch.from_numpy(zero_wav) | |
| if (is_half == True): | |
| wav16k = wav16k.half().to(device) | |
| zero_wav_torch = zero_wav_torch.half().to(device) | |
| else: | |
| wav16k = wav16k.to(device) | |
| zero_wav_torch = zero_wav_torch.to(device) | |
| wav16k=torch.cat([wav16k,zero_wav_torch]) | |
| ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() | |
| codes = vq_model.extract_latent(ssl_content) | |
| prompt_semantic = codes[0, 0] | |
| t1 = ttime() | |
| prompt_language = dict_language[prompt_language] | |
| text_language = dict_language[text_language] | |
| phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) | |
| phones1 = cleaned_text_to_sequence(phones1) | |
| audios_opt=[] | |
| for text0 in textss: | |
| texts = text0.strip("\n").split("\n") | |
| audio_opt = [] | |
| for text in texts: | |
| text=text.strip("。")+"。" | |
| phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
| phones2 = cleaned_text_to_sequence(phones2) | |
| if (prompt_language == "zh"): | |
| bert1 = get_bert_feature(norm_text1, word2ph1).to(device) | |
| else: | |
| bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to( | |
| device) | |
| if (text_language == "zh"): | |
| bert2 = get_bert_feature(norm_text2, word2ph2).to(device) | |
| else: | |
| bert2 = torch.zeros((1024, len(phones2))).to(bert1) | |
| bert = torch.cat([bert1, bert2], 1) | |
| all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
| bert = bert.to(device).unsqueeze(0) | |
| all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
| prompt = prompt_semantic.unsqueeze(0).to(device) | |
| t2 = ttime() | |
| with torch.no_grad(): | |
| # pred_semantic = t2s_model.model.infer( | |
| pred_semantic, idx = t2s_model.model.infer_panel( | |
| all_phoneme_ids, | |
| all_phoneme_len, | |
| prompt, | |
| bert, | |
| # prompt_phone_len=ph_offset, | |
| top_k=config['inference']['top_k'], | |
| early_stop_num=hz * max_sec) | |
| t3 = ttime() | |
| # print(pred_semantic.shape,idx) | |
| pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 | |
| refer = get_spepc(hps, ref_wav_path) # .to(device) | |
| if (is_half == True): | |
| refer = refer.half().to(device) | |
| else: | |
| refer = refer.to(device) | |
| # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
| audio = \ | |
| vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), | |
| refer).detach().cpu().numpy()[ | |
| 0, 0] ###试试重建不带上prompt部分 | |
| audio_opt.append(audio) | |
| audio_opt.append(zero_wav) | |
| t4 = ttime() | |
| print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
| audios_opt.append([text0,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16)]) | |
| return audios_opt | |
| # get_tts_wav(r"D:\BaiduNetdiskDownload\gsv\speech\萧逸声音-你得先从滑雪的基本技巧学起.wav", "你得先从滑雪的基本技巧学起。", "中文", "我觉得还是该给喜欢的女孩子一场认真的告白。", "中文") | |
| # with open(r"D:\BaiduNetdiskDownload\gsv\烟嗓-todo1.txt","r",encoding="utf8")as f: | |
| # with open(r"D:\BaiduNetdiskDownload\gsv\年下-todo1.txt","r",encoding="utf8")as f: | |
| # with open(r"D:\BaiduNetdiskDownload\gsv\萧逸3b.txt","r",encoding="utf8")as f: | |
| with open(r"D:\BaiduNetdiskDownload\gsv\萧逸4.txt","r",encoding="utf8")as f: | |
| textss=f.read().split("\n") | |
| for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\speech\萧逸声音-你得先从滑雪的基本技巧学起.wav", "你得先从滑雪的基本技巧学起。", "中文", textss, "中文")): | |
| # for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\足够的能力,去制定好自己的生活规划。低沉烟嗓.MP3_1940480_2095360.wav", "足够的能力,去制定好自己的生活规划。", "中文", textss, "中文")): | |
| # for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\不会呀!你前几天才吃过你还说好吃来着。年下少年音.MP3_537600_711040.wav", "不会呀!你前几天才吃过你还说好吃来着。", "中文", textss, "中文")): | |
| print(idx,text) | |
| # sf.write(r"D:\BaiduNetdiskDownload\gsv\output\烟嗓第一批\%04d-%s.wav"%(idx,text),audio,32000) | |
| # sf.write(r"D:\BaiduNetdiskDownload\gsv\output\年下\%04d-%s.wav"%(idx,text),audio,32000) | |
| sf.write(r"D:\BaiduNetdiskDownload\gsv\output\萧逸第4批\%04d-%s.wav"%(idx,text),audio,32000) | |
| # def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language): | |
| # if command == "/restart": | |
| # os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) | |
| # elif command == "/exit": | |
| # os.kill(os.getpid(), signal.SIGTERM) | |
| # exit(0) | |
| # | |
| # if ( | |
| # refer_wav_path == "" or refer_wav_path is None | |
| # or prompt_text == "" or prompt_text is None | |
| # or prompt_language == "" or prompt_language is None | |
| # ): | |
| # refer_wav_path, prompt_text, prompt_language = ( | |
| # default_refer_path, | |
| # default_refer_text, | |
| # default_refer_language, | |
| # ) | |
| # if not has_preset: | |
| # raise HTTPException(status_code=400, detail="未指定参考音频且接口无预设") | |
| # | |
| # with torch.no_grad(): | |
| # gen = get_tts_wav( | |
| # refer_wav_path, prompt_text, prompt_language, text, text_language | |
| # ) | |
| # sampling_rate, audio_data = next(gen) | |
| # | |
| # wav = BytesIO() | |
| # sf.write(wav, audio_data, sampling_rate, format="wav") | |
| # wav.seek(0) | |
| # | |
| # torch.cuda.empty_cache() | |
| # return StreamingResponse(wav, media_type="audio/wav") | |
| # app = FastAPI() | |
| # | |
| # | |
| # @app.post("/") | |
| # async def tts_endpoint(request: Request): | |
| # json_post_raw = await request.json() | |
| # return handle( | |
| # json_post_raw.get("command"), | |
| # json_post_raw.get("refer_wav_path"), | |
| # json_post_raw.get("prompt_text"), | |
| # json_post_raw.get("prompt_language"), | |
| # json_post_raw.get("text"), | |
| # json_post_raw.get("text_language"), | |
| # ) | |
| # | |
| # | |
| # @app.get("/") | |
| # async def tts_endpoint( | |
| # command: str = None, | |
| # refer_wav_path: str = None, | |
| # prompt_text: str = None, | |
| # prompt_language: str = None, | |
| # text: str = None, | |
| # text_language: str = None, | |
| # ): | |
| # return handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language) | |
| # | |
| # | |
| # if __name__ == "__main__": | |
| # uvicorn.run(app, host=host, port=port, workers=1) | |