Spaces:
Runtime error
Runtime error
""" | |
按中英混合识别 | |
按日英混合识别 | |
多语种启动切分识别语种 | |
全部按中文识别 | |
全部按英文识别 | |
全部按日文识别 | |
""" | |
import json | |
import logging | |
import os | |
import random | |
import re | |
import sys | |
import torch | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
sys.path.append("%s/GPT_SoVITS" % (now_dir)) | |
logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
logging.getLogger("urllib3").setLevel(logging.ERROR) | |
logging.getLogger("httpcore").setLevel(logging.ERROR) | |
logging.getLogger("httpx").setLevel(logging.ERROR) | |
logging.getLogger("asyncio").setLevel(logging.ERROR) | |
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) | |
infer_ttswebui = int(infer_ttswebui) | |
is_share = os.environ.get("is_share", "False") | |
is_share = eval(is_share) | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() | |
gpt_path = os.environ.get("gpt_path", None) | |
sovits_path = os.environ.get("sovits_path", None) | |
cnhubert_base_path = os.environ.get("cnhubert_base_path", None) | |
bert_path = os.environ.get("bert_path", None) | |
version = model_version = os.environ.get("version", "v2") | |
import gradio as gr | |
from TTS_infer_pack.text_segmentation_method import get_method | |
from TTS_infer_pack.TTS import NO_PROMPT_ERROR, TTS, TTS_Config | |
from tools.assets import css, js, top_html | |
from tools.i18n.i18n import I18nAuto, scan_language_list | |
language = os.environ.get("language", "Auto") | |
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language | |
i18n = I18nAuto(language=language) | |
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
# elif torch.backends.mps.is_available(): | |
# device = "mps" | |
else: | |
device = "cpu" | |
# is_half = False | |
# device = "cpu" | |
dict_language_v1 = { | |
i18n("中文"): "all_zh", # 全部按中文识别 | |
i18n("英文"): "en", # 全部按英文识别#######不变 | |
i18n("日文"): "all_ja", # 全部按日文识别 | |
i18n("中英混合"): "zh", # 按中英混合识别####不变 | |
i18n("日英混合"): "ja", # 按日英混合识别####不变 | |
i18n("多语种混合"): "auto", # 多语种启动切分识别语种 | |
} | |
dict_language_v2 = { | |
i18n("中文"): "all_zh", # 全部按中文识别 | |
i18n("英文"): "en", # 全部按英文识别#######不变 | |
i18n("日文"): "all_ja", # 全部按日文识别 | |
i18n("粤语"): "all_yue", # 全部按中文识别 | |
i18n("韩文"): "all_ko", # 全部按韩文识别 | |
i18n("中英混合"): "zh", # 按中英混合识别####不变 | |
i18n("日英混合"): "ja", # 按日英混合识别####不变 | |
i18n("粤英混合"): "yue", # 按粤英混合识别####不变 | |
i18n("韩英混合"): "ko", # 按韩英混合识别####不变 | |
i18n("多语种混合"): "auto", # 多语种启动切分识别语种 | |
i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 | |
} | |
dict_language = dict_language_v1 if version == "v1" else dict_language_v2 | |
cut_method = { | |
i18n("不切"): "cut0", | |
i18n("凑四句一切"): "cut1", | |
i18n("凑50字一切"): "cut2", | |
i18n("按中文句号。切"): "cut3", | |
i18n("按英文句号.切"): "cut4", | |
i18n("按标点符号切"): "cut5", | |
} | |
from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path | |
SoVITS_names, GPT_names = get_weights_names() | |
from config import pretrained_sovits_name | |
path_sovits_v3 = pretrained_sovits_name["v3"] | |
path_sovits_v4 = pretrained_sovits_name["v4"] | |
is_exist_s2gv3 = os.path.exists(path_sovits_v3) | |
is_exist_s2gv4 = os.path.exists(path_sovits_v4) | |
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml") | |
tts_config.device = device | |
tts_config.is_half = is_half | |
tts_config.version = version | |
if gpt_path is not None: | |
if "!" in gpt_path: | |
gpt_path = name2gpt_path[gpt_path] | |
tts_config.t2s_weights_path = gpt_path | |
if sovits_path is not None: | |
if "!" in sovits_path: | |
sovits_path = name2sovits_path[sovits_path] | |
tts_config.vits_weights_path = sovits_path | |
if cnhubert_base_path is not None: | |
tts_config.cnhuhbert_base_path = cnhubert_base_path | |
if bert_path is not None: | |
tts_config.bert_base_path = bert_path | |
print(tts_config) | |
tts_pipeline = TTS(tts_config) | |
gpt_path = tts_config.t2s_weights_path | |
sovits_path = tts_config.vits_weights_path | |
version = tts_config.version | |
def inference( | |
text, | |
text_lang, | |
ref_audio_path, | |
aux_ref_audio_paths, | |
prompt_text, | |
prompt_lang, | |
top_k, | |
top_p, | |
temperature, | |
text_split_method, | |
batch_size, | |
speed_factor, | |
ref_text_free, | |
split_bucket, | |
fragment_interval, | |
seed, | |
keep_random, | |
parallel_infer, | |
repetition_penalty, | |
sample_steps, | |
super_sampling, | |
): | |
seed = -1 if keep_random else seed | |
actual_seed = seed if seed not in [-1, "", None] else random.randint(0, 2**32 - 1) | |
inputs = { | |
"text": text, | |
"text_lang": dict_language[text_lang], | |
"ref_audio_path": ref_audio_path, | |
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [], | |
"prompt_text": prompt_text if not ref_text_free else "", | |
"prompt_lang": dict_language[prompt_lang], | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"text_split_method": cut_method[text_split_method], | |
"batch_size": int(batch_size), | |
"speed_factor": float(speed_factor), | |
"split_bucket": split_bucket, | |
"return_fragment": False, | |
"fragment_interval": fragment_interval, | |
"seed": actual_seed, | |
"parallel_infer": parallel_infer, | |
"repetition_penalty": repetition_penalty, | |
"sample_steps": int(sample_steps), | |
"super_sampling": super_sampling, | |
} | |
try: | |
for item in tts_pipeline.run(inputs): | |
yield item, actual_seed | |
except NO_PROMPT_ERROR: | |
gr.Warning(i18n("V3不支持无参考文本模式,请填写参考文本!")) | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split("(\d+)", s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
if os.path.exists("./weight.json"): | |
pass | |
else: | |
with open("./weight.json", "w", encoding="utf-8") as file: | |
json.dump({"GPT": {}, "SoVITS": {}}, file) | |
with open("./weight.json", "r", encoding="utf-8") as file: | |
weight_data = file.read() | |
weight_data = json.loads(weight_data) | |
gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1])) | |
sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0])) | |
if isinstance(gpt_path, list): | |
gpt_path = gpt_path[0] | |
if isinstance(sovits_path, list): | |
sovits_path = sovits_path[0] | |
from process_ckpt import get_sovits_version_from_path_fast | |
v3v4set = {"v3", "v4"} | |
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): | |
if "!" in sovits_path: | |
sovits_path = name2sovits_path[sovits_path] | |
global version, model_version, dict_language, if_lora_v3 | |
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path) | |
# print(sovits_path,version, model_version, if_lora_v3) | |
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4 | |
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 | |
if if_lora_v3 == True and is_exist == False: | |
info = path_sovits + "SoVITS %s" % model_version + i18n("底模缺失,无法加载相应 LoRA 权重") | |
gr.Warning(info) | |
raise FileExistsError(info) | |
dict_language = dict_language_v1 if version == "v1" else dict_language_v2 | |
if prompt_language is not None and text_language is not None: | |
if prompt_language in list(dict_language.keys()): | |
prompt_text_update, prompt_language_update = ( | |
{"__type__": "update"}, | |
{"__type__": "update", "value": prompt_language}, | |
) | |
else: | |
prompt_text_update = {"__type__": "update", "value": ""} | |
prompt_language_update = {"__type__": "update", "value": i18n("中文")} | |
if text_language in list(dict_language.keys()): | |
text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language} | |
else: | |
text_update = {"__type__": "update", "value": ""} | |
text_language_update = {"__type__": "update", "value": i18n("中文")} | |
if model_version in v3v4set: | |
visible_sample_steps = True | |
visible_inp_refs = False | |
else: | |
visible_sample_steps = False | |
visible_inp_refs = True | |
yield ( | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
prompt_text_update, | |
prompt_language_update, | |
text_update, | |
text_language_update, | |
{"__type__": "update", "interactive": visible_sample_steps, "value": 32}, | |
{"__type__": "update", "visible": visible_inp_refs}, | |
{"__type__": "update", "interactive": True if model_version not in v3v4set else False}, | |
{"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False}, | |
) | |
tts_pipeline.init_vits_weights(sovits_path) | |
yield ( | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
{"__type__": "update", "choices": list(dict_language.keys())}, | |
prompt_text_update, | |
prompt_language_update, | |
text_update, | |
text_language_update, | |
{"__type__": "update", "interactive": visible_sample_steps, "value": 32}, | |
{"__type__": "update", "visible": visible_inp_refs}, | |
{"__type__": "update", "interactive": True if model_version not in v3v4set else False}, | |
{"__type__": "update", "value": i18n("合成语音"), "interactive": True}, | |
) | |
with open("./weight.json") as f: | |
data = f.read() | |
data = json.loads(data) | |
data["SoVITS"][version] = sovits_path | |
with open("./weight.json", "w") as f: | |
f.write(json.dumps(data)) | |
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app: | |
gr.HTML( | |
top_html.format( | |
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") | |
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") | |
), | |
elem_classes="markdown", | |
) | |
with gr.Column(): | |
# with gr.Group(): | |
gr.Markdown(value=i18n("模型切换")) | |
with gr.Row(): | |
GPT_dropdown = gr.Dropdown( | |
label=i18n("GPT模型列表"), | |
choices=sorted(GPT_names, key=custom_sort_key), | |
value=gpt_path, | |
interactive=True, | |
) | |
SoVITS_dropdown = gr.Dropdown( | |
label=i18n("SoVITS模型列表"), | |
choices=sorted(SoVITS_names, key=custom_sort_key), | |
value=sovits_path, | |
interactive=True, | |
) | |
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") | |
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(value=i18n("*请上传并填写参考信息")) | |
with gr.Row(): | |
inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath") | |
inp_refs = gr.File( | |
label=i18n("辅参考音频(可选多个,或不选)"), | |
file_count="multiple", | |
visible=True if model_version != "v3" else False, | |
) | |
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2) | |
with gr.Row(): | |
prompt_language = gr.Dropdown( | |
label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文") | |
) | |
with gr.Column(): | |
ref_text_free = gr.Checkbox( | |
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), | |
value=False, | |
interactive=True if model_version != "v3" else False, | |
show_label=True, | |
) | |
gr.Markdown( | |
i18n("使用无参考文本模式时建议使用微调的GPT") | |
+ "<br>" | |
+ i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。") | |
) | |
with gr.Column(): | |
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式")) | |
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20) | |
text_language = gr.Dropdown( | |
label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文") | |
) | |
with gr.Group(): | |
gr.Markdown(value=i18n("推理设置")) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
batch_size = gr.Slider( | |
minimum=1, maximum=200, step=1, label=i18n("batch_size"), value=20, interactive=True | |
) | |
sample_steps = gr.Radio( | |
label=i18n("采样步数(仅对V3/4生效)"), value=32, choices=[4, 8, 16, 32, 64, 128], visible=True | |
) | |
with gr.Row(): | |
fragment_interval = gr.Slider( | |
minimum=0.01, maximum=1, step=0.01, label=i18n("分段间隔(秒)"), value=0.3, interactive=True | |
) | |
speed_factor = gr.Slider( | |
minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1.0, interactive=True | |
) | |
with gr.Row(): | |
top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=5, interactive=True) | |
top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True) | |
with gr.Row(): | |
temperature = gr.Slider( | |
minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True | |
) | |
repetition_penalty = gr.Slider( | |
minimum=0, maximum=2, step=0.05, label=i18n("重复惩罚"), value=1.35, interactive=True | |
) | |
with gr.Column(): | |
with gr.Row(): | |
how_to_cut = gr.Dropdown( | |
label=i18n("怎么切"), | |
choices=[ | |
i18n("不切"), | |
i18n("凑四句一切"), | |
i18n("凑50字一切"), | |
i18n("按中文句号。切"), | |
i18n("按英文句号.切"), | |
i18n("按标点符号切"), | |
], | |
value=i18n("凑四句一切"), | |
interactive=True, | |
scale=1, | |
) | |
super_sampling = gr.Checkbox( | |
label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True | |
) | |
with gr.Row(): | |
parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True) | |
split_bucket = gr.Checkbox( | |
label=i18n("数据分桶(并行推理时会降低一点计算量)"), | |
value=True, | |
interactive=True, | |
show_label=True, | |
) | |
with gr.Row(): | |
seed = gr.Number(label=i18n("随机种子"), value=-1) | |
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True) | |
output = gr.Audio(label=i18n("输出的语音")) | |
with gr.Row(): | |
inference_button = gr.Button(i18n("合成语音"), variant="primary") | |
stop_infer = gr.Button(i18n("终止合成"), variant="primary") | |
inference_button.click( | |
inference, | |
[ | |
text, | |
text_language, | |
inp_ref, | |
inp_refs, | |
prompt_text, | |
prompt_language, | |
top_k, | |
top_p, | |
temperature, | |
how_to_cut, | |
batch_size, | |
speed_factor, | |
ref_text_free, | |
split_bucket, | |
fragment_interval, | |
seed, | |
keep_random, | |
parallel_infer, | |
repetition_penalty, | |
sample_steps, | |
super_sampling, | |
], | |
[output, seed], | |
) | |
stop_infer.click(tts_pipeline.stop, [], []) | |
SoVITS_dropdown.change( | |
change_sovits_weights, | |
[SoVITS_dropdown, prompt_language, text_language], | |
[ | |
prompt_language, | |
text_language, | |
prompt_text, | |
prompt_language, | |
text, | |
text_language, | |
sample_steps, | |
inp_refs, | |
ref_text_free, | |
inference_button, | |
], | |
) # | |
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], []) | |
with gr.Group(): | |
gr.Markdown( | |
value=i18n( | |
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。" | |
) | |
) | |
with gr.Row(): | |
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4) | |
with gr.Column(): | |
_how_to_cut = gr.Radio( | |
label=i18n("怎么切"), | |
choices=[ | |
i18n("不切"), | |
i18n("凑四句一切"), | |
i18n("凑50字一切"), | |
i18n("按中文句号。切"), | |
i18n("按英文句号.切"), | |
i18n("按标点符号切"), | |
], | |
value=i18n("凑四句一切"), | |
interactive=True, | |
) | |
cut_text = gr.Button(i18n("切分"), variant="primary") | |
def to_cut(text_inp, how_to_cut): | |
if len(text_inp.strip()) == 0 or text_inp == []: | |
return "" | |
method = get_method(cut_method[how_to_cut]) | |
return method(text_inp) | |
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4) | |
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt]) | |
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")) | |
if __name__ == "__main__": | |
app.queue().launch( # concurrency_count=511, max_size=1022 | |
server_name="0.0.0.0", | |
inbrowser=True, | |
share=is_share, | |
server_port=infer_ttswebui, | |
# quiet=True, | |
) | |