Spaces:
Runtime error
Runtime error
import warnings | |
warnings.filterwarnings("ignore") | |
import os | |
import utils | |
hps = utils.get_hparams(stage=2) | |
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",") | |
import logging | |
import torch | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
from torch.cuda.amp import GradScaler, autocast | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
from tqdm import tqdm | |
logging.getLogger("matplotlib").setLevel(logging.INFO) | |
logging.getLogger("h5py").setLevel(logging.INFO) | |
logging.getLogger("numba").setLevel(logging.INFO) | |
from collections import OrderedDict as od | |
from random import randint | |
from module import commons | |
from module.data_utils import ( | |
DistributedBucketSampler, | |
TextAudioSpeakerCollateV3, | |
TextAudioSpeakerLoaderV3, | |
TextAudioSpeakerCollateV4, | |
TextAudioSpeakerLoaderV4, | |
) | |
from module.models import ( | |
SynthesizerTrnV3 as SynthesizerTrn, | |
) | |
from peft import LoraConfig, get_peft_model | |
from process_ckpt import savee | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = False | |
###反正A100fp32更快,那试试tf32吧 | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响 | |
# from config import pretrained_s2G,pretrained_s2D | |
global_step = 0 | |
device = "cpu" # cuda以外的设备,等mps优化后加入 | |
def main(): | |
if torch.cuda.is_available(): | |
n_gpus = torch.cuda.device_count() | |
else: | |
n_gpus = 1 | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) | |
mp.spawn( | |
run, | |
nprocs=n_gpus, | |
args=( | |
n_gpus, | |
hps, | |
), | |
) | |
def run(rank, n_gpus, hps): | |
global global_step, no_grad_names, save_root, lora_rank | |
if rank == 0: | |
logger = utils.get_logger(hps.data.exp_dir) | |
logger.info(hps) | |
# utils.check_git_hash(hps.s2_ckpt_dir) | |
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir) | |
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval")) | |
dist.init_process_group( | |
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl", | |
init_method="env://?use_libuv=False", | |
world_size=n_gpus, | |
rank=rank, | |
) | |
torch.manual_seed(hps.train.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.set_device(rank) | |
TextAudioSpeakerLoader = TextAudioSpeakerLoaderV3 if hps.model.version == "v3" else TextAudioSpeakerLoaderV4 | |
TextAudioSpeakerCollate = TextAudioSpeakerCollateV3 if hps.model.version == "v3" else TextAudioSpeakerCollateV4 | |
train_dataset = TextAudioSpeakerLoader(hps.data) ######## | |
train_sampler = DistributedBucketSampler( | |
train_dataset, | |
hps.train.batch_size, | |
[ | |
32, | |
300, | |
400, | |
500, | |
600, | |
700, | |
800, | |
900, | |
1000, | |
# 1100, | |
# 1200, | |
# 1300, | |
# 1400, | |
# 1500, | |
# 1600, | |
# 1700, | |
# 1800, | |
# 1900, | |
], | |
num_replicas=n_gpus, | |
rank=rank, | |
shuffle=True, | |
) | |
collate_fn = TextAudioSpeakerCollate() | |
train_loader = DataLoader( | |
train_dataset, | |
num_workers=6, | |
shuffle=False, | |
pin_memory=True, | |
collate_fn=collate_fn, | |
batch_sampler=train_sampler, | |
persistent_workers=True, | |
prefetch_factor=4, | |
) | |
save_root = "%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir, hps.model.version, hps.train.lora_rank) | |
os.makedirs(save_root, exist_ok=True) | |
lora_rank = int(hps.train.lora_rank) | |
lora_config = LoraConfig( | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
r=lora_rank, | |
lora_alpha=lora_rank, | |
init_lora_weights=True, | |
) | |
def get_model(hps): | |
return SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
) | |
def get_optim(net_g): | |
return torch.optim.AdamW( | |
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致 | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
def model2cuda(net_g, rank): | |
if torch.cuda.is_available(): | |
net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True) | |
else: | |
net_g = net_g.to(device) | |
return net_g | |
try: # 如果能加载自动resume | |
net_g = get_model(hps) | |
net_g.cfm = get_peft_model(net_g.cfm, lora_config) | |
net_g = model2cuda(net_g, rank) | |
optim_g = get_optim(net_g) | |
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0) | |
_, _, _, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path(save_root, "G_*.pth"), | |
net_g, | |
optim_g, | |
) | |
epoch_str += 1 | |
global_step = (epoch_str - 1) * len(train_loader) | |
except: # 如果首次不能加载,加载pretrain | |
# traceback.print_exc() | |
epoch_str = 1 | |
global_step = 0 | |
net_g = get_model(hps) | |
if ( | |
hps.train.pretrained_s2G != "" | |
and hps.train.pretrained_s2G != None | |
and os.path.exists(hps.train.pretrained_s2G) | |
): | |
if rank == 0: | |
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G) | |
print( | |
"loaded pretrained %s" % hps.train.pretrained_s2G, | |
net_g.load_state_dict( | |
torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"], | |
strict=False, | |
), | |
) | |
net_g.cfm = get_peft_model(net_g.cfm, lora_config) | |
net_g = model2cuda(net_g, rank) | |
optim_g = get_optim(net_g) | |
no_grad_names = set() | |
for name, param in net_g.named_parameters(): | |
if not param.requires_grad: | |
no_grad_names.add(name.replace("module.", "")) | |
# print(name, "not requires_grad") | |
# print(no_grad_names) | |
# os._exit(233333) | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1) | |
for _ in range(epoch_str): | |
scheduler_g.step() | |
scaler = GradScaler(enabled=hps.train.fp16_run) | |
net_d = optim_d = scheduler_d = None | |
print("start training from epoch %s" % epoch_str) | |
for epoch in range(epoch_str, hps.train.epochs + 1): | |
if rank == 0: | |
train_and_evaluate( | |
rank, | |
epoch, | |
hps, | |
[net_g, net_d], | |
[optim_g, optim_d], | |
[scheduler_g, scheduler_d], | |
scaler, | |
# [train_loader, eval_loader], logger, [writer, writer_eval]) | |
[train_loader, None], | |
logger, | |
[writer, writer_eval], | |
) | |
else: | |
train_and_evaluate( | |
rank, | |
epoch, | |
hps, | |
[net_g, net_d], | |
[optim_g, optim_d], | |
[scheduler_g, scheduler_d], | |
scaler, | |
[train_loader, None], | |
None, | |
None, | |
) | |
scheduler_g.step() | |
print("training done") | |
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): | |
net_g, net_d = nets | |
optim_g, optim_d = optims | |
# scheduler_g, scheduler_d = schedulers | |
train_loader, eval_loader = loaders | |
if writers is not None: | |
writer, writer_eval = writers | |
train_loader.batch_sampler.set_epoch(epoch) | |
global global_step | |
net_g.train() | |
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate( | |
tqdm(train_loader) | |
): | |
if torch.cuda.is_available(): | |
spec, spec_lengths = ( | |
spec.cuda( | |
rank, | |
non_blocking=True, | |
), | |
spec_lengths.cuda( | |
rank, | |
non_blocking=True, | |
), | |
) | |
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True) | |
ssl = ssl.cuda(rank, non_blocking=True) | |
ssl.requires_grad = False | |
text, text_lengths = ( | |
text.cuda( | |
rank, | |
non_blocking=True, | |
), | |
text_lengths.cuda( | |
rank, | |
non_blocking=True, | |
), | |
) | |
else: | |
spec, spec_lengths = spec.to(device), spec_lengths.to(device) | |
mel, mel_lengths = mel.to(device), mel_lengths.to(device) | |
ssl = ssl.to(device) | |
ssl.requires_grad = False | |
text, text_lengths = text.to(device), text_lengths.to(device) | |
with autocast(enabled=hps.train.fp16_run): | |
cfm_loss = net_g( | |
ssl, | |
spec, | |
mel, | |
ssl_lengths, | |
spec_lengths, | |
text, | |
text_lengths, | |
mel_lengths, | |
use_grad_ckpt=hps.train.grad_ckpt, | |
) | |
loss_gen_all = cfm_loss | |
optim_g.zero_grad() | |
scaler.scale(loss_gen_all).backward() | |
scaler.unscale_(optim_g) | |
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
if rank == 0: | |
if global_step % hps.train.log_interval == 0: | |
lr = optim_g.param_groups[0]["lr"] | |
losses = [cfm_loss] | |
logger.info("Train Epoch: {} [{:.0f}%]".format(epoch, 100.0 * batch_idx / len(train_loader))) | |
logger.info([x.item() for x in losses] + [global_step, lr]) | |
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g} | |
utils.summarize( | |
writer=writer, | |
global_step=global_step, | |
scalars=scalar_dict, | |
) | |
global_step += 1 | |
if epoch % hps.train.save_every_epoch == 0 and rank == 0: | |
if hps.train.if_save_latest == 0: | |
utils.save_checkpoint( | |
net_g, | |
optim_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(save_root, "G_{}.pth".format(global_step)), | |
) | |
else: | |
utils.save_checkpoint( | |
net_g, | |
optim_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(save_root, "G_{}.pth".format(233333333333)), | |
) | |
if rank == 0 and hps.train.if_save_every_weights == True: | |
if hasattr(net_g, "module"): | |
ckpt = net_g.module.state_dict() | |
else: | |
ckpt = net_g.state_dict() | |
sim_ckpt = od() | |
for key in ckpt: | |
# if "cfm"not in key: | |
# print(key) | |
if key not in no_grad_names: | |
sim_ckpt[key] = ckpt[key].half().cpu() | |
logger.info( | |
"saving ckpt %s_e%s:%s" | |
% ( | |
hps.name, | |
epoch, | |
savee( | |
sim_ckpt, | |
hps.name + "_e%s_s%s_l%s" % (epoch, global_step, lora_rank), | |
epoch, | |
global_step, | |
hps, | |
model_version=hps.model.version, | |
lora_rank=lora_rank, | |
), | |
) | |
) | |
if rank == 0: | |
logger.info("====> Epoch: {}".format(epoch)) | |
if __name__ == "__main__": | |
main() | |