Spaces:
Runtime error
Runtime error
import os | |
import random | |
import torch | |
import torchaudio | |
import torch.utils.data | |
import torchaudio.functional as aF | |
def amp_pha_stft(audio, n_fft, hop_size, win_size, center=True): | |
hann_window = torch.hann_window(win_size).to(audio.device) | |
stft_spec = torch.stft( | |
audio, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window, | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
return_complex=True, | |
) | |
log_amp = torch.log(torch.abs(stft_spec) + 1e-4) | |
pha = torch.angle(stft_spec) | |
com = torch.stack((torch.exp(log_amp) * torch.cos(pha), torch.exp(log_amp) * torch.sin(pha)), dim=-1) | |
return log_amp, pha, com | |
def amp_pha_istft(log_amp, pha, n_fft, hop_size, win_size, center=True): | |
amp = torch.exp(log_amp) | |
com = torch.complex(amp * torch.cos(pha), amp * torch.sin(pha)) | |
hann_window = torch.hann_window(win_size).to(com.device) | |
audio = torch.istft(com, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center) | |
return audio | |
def get_dataset_filelist(a): | |
with open(a.input_training_file, "r", encoding="utf-8") as fi: | |
training_indexes = [x.split("|")[0] for x in fi.read().split("\n") if len(x) > 0] | |
with open(a.input_validation_file, "r", encoding="utf-8") as fi: | |
validation_indexes = [x.split("|")[0] for x in fi.read().split("\n") if len(x) > 0] | |
return training_indexes, validation_indexes | |
class Dataset(torch.utils.data.Dataset): | |
def __init__( | |
self, | |
training_indexes, | |
wavs_dir, | |
segment_size, | |
hr_sampling_rate, | |
lr_sampling_rate, | |
split=True, | |
shuffle=True, | |
n_cache_reuse=1, | |
device=None, | |
): | |
self.audio_indexes = training_indexes | |
random.seed(1234) | |
if shuffle: | |
random.shuffle(self.audio_indexes) | |
self.wavs_dir = wavs_dir | |
self.segment_size = segment_size | |
self.hr_sampling_rate = hr_sampling_rate | |
self.lr_sampling_rate = lr_sampling_rate | |
self.split = split | |
self.cached_wav = None | |
self.n_cache_reuse = n_cache_reuse | |
self._cache_ref_count = 0 | |
self.device = device | |
def __getitem__(self, index): | |
filename = self.audio_indexes[index] | |
if self._cache_ref_count == 0: | |
audio, orig_sampling_rate = torchaudio.load(os.path.join(self.wavs_dir, filename + ".wav")) | |
self.cached_wav = audio | |
self._cache_ref_count = self.n_cache_reuse | |
else: | |
audio = self.cached_wav | |
self._cache_ref_count -= 1 | |
if orig_sampling_rate == self.hr_sampling_rate: | |
audio_hr = audio | |
else: | |
audio_hr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.hr_sampling_rate) | |
audio_lr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.lr_sampling_rate) | |
audio_lr = aF.resample(audio_lr, orig_freq=self.lr_sampling_rate, new_freq=self.hr_sampling_rate) | |
audio_lr = audio_lr[:, : audio_hr.size(1)] | |
if self.split: | |
if audio_hr.size(1) >= self.segment_size: | |
max_audio_start = audio_hr.size(1) - self.segment_size | |
audio_start = random.randint(0, max_audio_start) | |
audio_hr = audio_hr[:, audio_start : audio_start + self.segment_size] | |
audio_lr = audio_lr[:, audio_start : audio_start + self.segment_size] | |
else: | |
audio_hr = torch.nn.functional.pad(audio_hr, (0, self.segment_size - audio_hr.size(1)), "constant") | |
audio_lr = torch.nn.functional.pad(audio_lr, (0, self.segment_size - audio_lr.size(1)), "constant") | |
return (audio_hr.squeeze(), audio_lr.squeeze()) | |
def __len__(self): | |
return len(self.audio_indexes) | |