Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn.utils import weight_norm, spectral_norm | |
# from utils import init_weights, get_padding | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
import numpy as np | |
from typing import Tuple, List | |
LRELU_SLOPE = 0.1 | |
class ConvNeXtBlock(nn.Module): | |
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. | |
Args: | |
dim (int): Number of input channels. | |
intermediate_dim (int): Dimensionality of the intermediate layer. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional LayerNorm. Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
layer_scale_init_value=None, | |
adanorm_num_embeddings=None, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.adanorm = adanorm_num_embeddings is not None | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, dim * 3) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(dim * 3, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
def forward(self, x, cond_embedding_id=None): | |
residual = x | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
if self.adanorm: | |
assert cond_embedding_id is not None | |
x = self.norm(x, cond_embedding_id) | |
else: | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
x = residual + x | |
return x | |
class APNet_BWE_Model(torch.nn.Module): | |
def __init__(self, h): | |
super(APNet_BWE_Model, self).__init__() | |
self.h = h | |
self.adanorm_num_embeddings = None | |
layer_scale_init_value = 1 / h.ConvNeXt_layers | |
self.conv_pre_mag = nn.Conv1d(h.n_fft // 2 + 1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1)) | |
self.norm_pre_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) | |
self.conv_pre_pha = nn.Conv1d(h.n_fft // 2 + 1, h.ConvNeXt_channels, 7, 1, padding=get_padding(7, 1)) | |
self.norm_pre_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) | |
self.convnext_mag = nn.ModuleList( | |
[ | |
ConvNeXtBlock( | |
dim=h.ConvNeXt_channels, | |
layer_scale_init_value=layer_scale_init_value, | |
adanorm_num_embeddings=self.adanorm_num_embeddings, | |
) | |
for _ in range(h.ConvNeXt_layers) | |
] | |
) | |
self.convnext_pha = nn.ModuleList( | |
[ | |
ConvNeXtBlock( | |
dim=h.ConvNeXt_channels, | |
layer_scale_init_value=layer_scale_init_value, | |
adanorm_num_embeddings=self.adanorm_num_embeddings, | |
) | |
for _ in range(h.ConvNeXt_layers) | |
] | |
) | |
self.norm_post_mag = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) | |
self.norm_post_pha = nn.LayerNorm(h.ConvNeXt_channels, eps=1e-6) | |
self.apply(self._init_weights) | |
self.linear_post_mag = nn.Linear(h.ConvNeXt_channels, h.n_fft // 2 + 1) | |
self.linear_post_pha_r = nn.Linear(h.ConvNeXt_channels, h.n_fft // 2 + 1) | |
self.linear_post_pha_i = nn.Linear(h.ConvNeXt_channels, h.n_fft // 2 + 1) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, mag_nb, pha_nb): | |
x_mag = self.conv_pre_mag(mag_nb) | |
x_pha = self.conv_pre_pha(pha_nb) | |
x_mag = self.norm_pre_mag(x_mag.transpose(1, 2)).transpose(1, 2) | |
x_pha = self.norm_pre_pha(x_pha.transpose(1, 2)).transpose(1, 2) | |
for conv_block_mag, conv_block_pha in zip(self.convnext_mag, self.convnext_pha): | |
x_mag = x_mag + x_pha | |
x_pha = x_pha + x_mag | |
x_mag = conv_block_mag(x_mag, cond_embedding_id=None) | |
x_pha = conv_block_pha(x_pha, cond_embedding_id=None) | |
x_mag = self.norm_post_mag(x_mag.transpose(1, 2)) | |
mag_wb = mag_nb + self.linear_post_mag(x_mag).transpose(1, 2) | |
x_pha = self.norm_post_pha(x_pha.transpose(1, 2)) | |
x_pha_r = self.linear_post_pha_r(x_pha) | |
x_pha_i = self.linear_post_pha_i(x_pha) | |
pha_wb = torch.atan2(x_pha_i, x_pha_r).transpose(1, 2) | |
com_wb = torch.stack((torch.exp(mag_wb) * torch.cos(pha_wb), torch.exp(mag_wb) * torch.sin(pha_wb)), dim=-1) | |
return mag_wb, pha_wb, com_wb | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
] | |
) | |
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for i, l in enumerate(self.convs): | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
if i > 0: | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorP(2), | |
DiscriminatorP(3), | |
DiscriminatorP(5), | |
DiscriminatorP(7), | |
DiscriminatorP(11), | |
] | |
) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class MultiResolutionAmplitudeDiscriminator(nn.Module): | |
def __init__( | |
self, | |
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)), | |
num_embeddings: int = None, | |
): | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorAR(resolution=r, num_embeddings=num_embeddings) for r in resolutions] | |
) | |
def forward( | |
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorAR(nn.Module): | |
def __init__( | |
self, | |
resolution: Tuple[int, int, int], | |
channels: int = 64, | |
in_channels: int = 1, | |
num_embeddings: int = None, | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)), | |
] | |
) | |
if num_embeddings is not None: | |
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) | |
torch.nn.init.zeros_(self.emb.weight) | |
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1))) | |
def forward( | |
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
fmap = [] | |
x = x.squeeze(1) | |
x = self.spectrogram(x) | |
x = x.unsqueeze(1) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
if cond_embedding_id is not None: | |
emb = self.emb(cond_embedding_id) | |
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
else: | |
h = 0 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x += h | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: | |
n_fft, hop_length, win_length = self.resolution | |
amplitude_spectrogram = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
window=None, # interestingly rectangular window kind of works here | |
center=True, | |
return_complex=True, | |
).abs() | |
return amplitude_spectrogram | |
class MultiResolutionPhaseDiscriminator(nn.Module): | |
def __init__( | |
self, | |
resolutions: Tuple[Tuple[int, int, int]] = ((512, 128, 512), (1024, 256, 1024), (2048, 512, 2048)), | |
num_embeddings: int = None, | |
): | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorPR(resolution=r, num_embeddings=num_embeddings) for r in resolutions] | |
) | |
def forward( | |
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorPR(nn.Module): | |
def __init__( | |
self, | |
resolution: Tuple[int, int, int], | |
channels: int = 64, | |
in_channels: int = 1, | |
num_embeddings: int = None, | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(in_channels, channels, kernel_size=(7, 5), stride=(2, 2), padding=(3, 2))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 1), padding=(2, 1))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=(5, 3), stride=(2, 2), padding=(2, 1))), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 1), padding=1)), | |
weight_norm(nn.Conv2d(channels, channels, kernel_size=3, stride=(2, 2), padding=1)), | |
] | |
) | |
if num_embeddings is not None: | |
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) | |
torch.nn.init.zeros_(self.emb.weight) | |
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), padding=(1, 1))) | |
def forward( | |
self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
fmap = [] | |
x = x.squeeze(1) | |
x = self.spectrogram(x) | |
x = x.unsqueeze(1) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
if cond_embedding_id is not None: | |
emb = self.emb(cond_embedding_id) | |
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
else: | |
h = 0 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x += h | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
def spectrogram(self, x: torch.Tensor) -> torch.Tensor: | |
n_fft, hop_length, win_length = self.resolution | |
phase_spectrogram = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
window=None, # interestingly rectangular window kind of works here | |
center=True, | |
return_complex=True, | |
).angle() | |
return phase_spectrogram | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean(torch.clamp(1 - dr, min=0)) | |
g_loss = torch.mean(torch.clamp(1 + dg, min=0)) | |
loss += r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean(torch.clamp(1 - dg, min=0)) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
def phase_losses(phase_r, phase_g): | |
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g)) | |
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1))) | |
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2))) | |
return ip_loss, gd_loss, iaf_loss | |
def anti_wrapping_function(x): | |
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi) | |
def stft_mag(audio, n_fft=2048, hop_length=512): | |
hann_window = torch.hann_window(n_fft).to(audio.device) | |
stft_spec = torch.stft(audio, n_fft, hop_length, window=hann_window, return_complex=True) | |
stft_mag = torch.abs(stft_spec) | |
return stft_mag | |
def cal_snr(pred, target): | |
snr = (20 * torch.log10(torch.norm(target, dim=-1) / torch.norm(pred - target, dim=-1).clamp(min=1e-8))).mean() | |
return snr | |
def cal_lsd(pred, target): | |
sp = torch.log10(stft_mag(pred).square().clamp(1e-8)) | |
st = torch.log10(stft_mag(target).square().clamp(1e-8)) | |
return (sp - st).square().mean(dim=1).sqrt().mean() | |