""" 按中英混合识别 按日英混合识别 多语种启动切分识别语种 全部按中文识别 全部按英文识别 全部按日文识别 """ import spaces from module.mel_processing import mel_spectrogram_torch, spectrogram_torch from text import chinese from sv import SV from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new from tools.i18n.i18n import I18nAuto, scan_language_list from tools.assets import css, js, top_html from text.cleaner import clean_text from text import cleaned_text_to_sequence from peft import LoraConfig, get_peft_model from AR.models.t2s_lightning_module import Text2SemanticLightningModule from time import time as ttime from GPT_SoVITS.module.models import Generator, SynthesizerTrn, SynthesizerTrnV3 import random from transformers import AutoModelForMaskedLM, AutoTokenizer from feature_extractor import cnhubert import numpy as np import librosa import gradio as gr from config import pretrained_sovits_name from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path import json import logging import os import re import sys import traceback import warnings import torch import torchaudio from text.LangSegmenter import LangSegmenter from scipy.io.wavfile import write import requests import io import zipfile from huggingface_hub import hf_hub_download import nltk nltk.download(['averaged_perceptron_tagger', 'averaged_perceptron_tagger_eng', 'cmudict']) zip_targets = { "pretrained_models.zip": "/home/user/app/GPT_SoVITS", "G2PWModel.zip": "/home/user/app/GPT_SoVITS/text" } repo_id = "XXXXRT/GPT-SoVITS-Pretrained" for filename, target_dir in zip_targets.items(): zip_path = hf_hub_download(repo_id=repo_id, filename=filename) os.makedirs(target_dir, exist_ok=True) with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(target_dir) print(f"{filename} 已解压到 {target_dir}") # 保存原始构造器 original_storage_new = torch.UntypedStorage.__new__ def _untyped_storage_new_register(cls, *args, **kwargs): cuda = False device = kwargs.get('device') # 先判断类型是否为 torch.device 再访问 type 属性 if isinstance(device, torch.device) and device.type == 'cuda': cuda = True del kwargs['device'] # 正确调用 __new__ storage = torch._C.StorageBase.__new__(cls, *args, **kwargs) # 标记是否是 ZeroGPU 模式 if cuda: storage._zerogpu = True return storage # 替换 __new__ 方法 torch.UntypedStorage.__new__ = _untyped_storage_new_register logging.getLogger("markdown_it").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("httpcore").setLevel(logging.ERROR) logging.getLogger("httpx").setLevel(logging.ERROR) logging.getLogger("asyncio").setLevel(logging.ERROR) logging.getLogger("charset_normalizer").setLevel(logging.ERROR) logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) logging.getLogger("multipart.multipart").setLevel(logging.ERROR) warnings.simplefilter(action="ignore", category=FutureWarning) # os.system("bash install.sh") version = model_version = os.environ.get("version", "v2") SoVITS_names, GPT_names = get_weights_names() print(SoVITS_names, GPT_names) path_sovits_v3 = pretrained_sovits_name["v3"] path_sovits_v4 = pretrained_sovits_name["v4"] is_exist_s2gv3 = os.path.exists(path_sovits_v3) is_exist_s2gv4 = os.path.exists(path_sovits_v4) if os.path.exists("./weight.json"): pass else: with open("./weight.json", "w", encoding="utf-8") as file: json.dump({"GPT": {}, "SoVITS": {}}, file) with open("./weight.json", "r", encoding="utf-8") as file: weight_data = file.read() weight_data = json.loads(weight_data) gpt_path = os.environ.get("gpt_path", weight_data.get( "GPT", {}).get(version, GPT_names[-1])) sovits_path = os.environ.get("sovits_path", weight_data.get( "SoVITS", {}).get(version, SoVITS_names[-1])) if isinstance(gpt_path, list): gpt_path = gpt_path[0] if isinstance(sovits_path, list): sovits_path = sovits_path[0] # print(2333333) # print(os.environ["gpt_path"]) # print(gpt_path) # print(GPT_names) # print(weight_data) # print(weight_data.get("GPT", {})) # print(version)###GPT version里没有s2的v2pro # print(weight_data.get("GPT", {}).get(version, GPT_names[-1])) cnhubert_base_path = os.environ.get( "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base") bert_path = os.environ.get( "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large") infer_ttswebui = os.environ.get("infer_ttswebui", 9872) infer_ttswebui = int(infer_ttswebui) is_share = os.environ.get("is_share", "False") is_share = eval(is_share) if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() # is_half=False punctuation = set(["!", "?", "…", ",", ".", "-", " "]) cnhubert.cnhubert_base_path = cnhubert_base_path def set_seed(seed): if seed == -1: seed = random.randint(0, 1000000) seed = int(seed) random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # set_seed(42) language = os.environ.get("language", "zh_CN") language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language i18n = I18nAuto(language=language) # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 device = "cuda" dict_language_v1 = { i18n("中文"): "all_zh", # 全部按中文识别 i18n("英文"): "en", # 全部按英文识别#######不变 i18n("日文"): "all_ja", # 全部按日文识别 i18n("中英混合"): "zh", # 按中英混合识别####不变 i18n("日英混合"): "ja", # 按日英混合识别####不变 i18n("多语种混合"): "auto", # 多语种启动切分识别语种 } dict_language_v2 = { i18n("中文"): "all_zh", # 全部按中文识别 i18n("英文"): "en", # 全部按英文识别#######不变 i18n("日文"): "all_ja", # 全部按日文识别 i18n("粤语"): "all_yue", # 全部按中文识别 i18n("韩文"): "all_ko", # 全部按韩文识别 i18n("中英混合"): "zh", # 按中英混合识别####不变 i18n("日英混合"): "ja", # 按日英混合识别####不变 i18n("粤英混合"): "yue", # 按粤英混合识别####不变 i18n("韩英混合"): "ko", # 按韩英混合识别####不变 i18n("多语种混合"): "auto", # 多语种启动切分识别语种 i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 } dict_language = dict_language_v1 if version == "v1" else dict_language_v2 tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) if is_half == True: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) for key, value in input_dict.items(): if isinstance(value, dict): value = DictToAttrRecursive(value) self[key] = value setattr(self, key, value) def __getattr__(self, item): try: return self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def __setattr__(self, key, value): if isinstance(value, dict): value = DictToAttrRecursive(value) super(DictToAttrRecursive, self).__setitem__(key, value) super().__setattr__(key, value) def __delattr__(self, item): try: del self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") ssl_model = cnhubert.get_model() if is_half == True: ssl_model = ssl_model.half().to(device) else: ssl_model = ssl_model.to(device) # todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt # symbol_version-model_version-if_lora_v3 v3v4set = {"v3", "v4"} def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): if "!" in sovits_path or "!" in sovits_path: sovits_path = name2sovits_path[sovits_path] global vq_model, hps, version, model_version, dict_language, if_lora_v3 version, model_version, if_lora_v3 = get_sovits_version_from_path_fast( sovits_path) print(sovits_path, version, model_version, if_lora_v3) is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4 path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 if if_lora_v3 == True and is_exist == False: info = path_sovits + "SoVITS %s" % model_version + \ i18n("底模缺失,无法加载相应 LoRA 权重") gr.Warning(info) raise FileExistsError(info) dict_language = dict_language_v1 if version == "v1" else dict_language_v2 if prompt_language is not None and text_language is not None: if prompt_language in list(dict_language.keys()): prompt_text_update, prompt_language_update = ( {"__type__": "update"}, {"__type__": "update", "value": prompt_language}, ) else: prompt_text_update = {"__type__": "update", "value": ""} prompt_language_update = { "__type__": "update", "value": i18n("中文")} if text_language in list(dict_language.keys()): text_update, text_language_update = {"__type__": "update"}, { "__type__": "update", "value": text_language} else: text_update = {"__type__": "update", "value": ""} text_language_update = {"__type__": "update", "value": i18n("中文")} if model_version in v3v4set: visible_sample_steps = True visible_inp_refs = False else: visible_sample_steps = False visible_inp_refs = True yield ( {"__type__": "update", "choices": list(dict_language.keys())}, {"__type__": "update", "choices": list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update, { "__type__": "update", "visible": visible_sample_steps, "value": 32 if model_version == "v3" else 8, "choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], }, {"__type__": "update", "visible": visible_inp_refs}, {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False}, {"__type__": "update", "visible": True if model_version == "v3" else False}, {"__type__": "update", "value": i18n( "模型加载中,请等待"), "interactive": False}, ) dict_s2 = load_sovits_new(sovits_path) hps = dict_s2["config"] hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" if "enc_p.text_embedding.weight" not in dict_s2["weight"]: hps.model.version = "v2" # v3model,v2sybomls elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322: hps.model.version = "v1" else: hps.model.version = "v2" version = hps.model.version # print("sovits版本:",hps.model.version) if model_version not in v3v4set: if "Pro" not in model_version: model_version = version else: hps.model.version = model_version vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ) else: hps.model.version = model_version vq_model = SynthesizerTrnV3( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ) if "pretrained" not in sovits_path: try: del vq_model.enc_q except: pass if is_half == True: vq_model = vq_model.half().to(device) else: vq_model = vq_model.to(device) vq_model.eval() if if_lora_v3 == False: print("loading sovits_%s" % model_version, vq_model.load_state_dict(dict_s2["weight"], strict=False)) else: path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4 print( "loading sovits_%spretrained_G" % model_version, vq_model.load_state_dict(load_sovits_new( path_sovits)["weight"], strict=False), ) lora_rank = dict_s2["lora_rank"] lora_config = LoraConfig( target_modules=["to_k", "to_q", "to_v", "to_out.0"], r=lora_rank, lora_alpha=lora_rank, init_lora_weights=True, ) vq_model.cfm = get_peft_model(vq_model.cfm, lora_config) print("loading sovits_%s_lora%s" % (model_version, lora_rank)) vq_model.load_state_dict(dict_s2["weight"], strict=False) vq_model.cfm = vq_model.cfm.merge_and_unload() # torch.save(vq_model.state_dict(),"merge_win.pth") vq_model.eval() yield ( {"__type__": "update", "choices": list(dict_language.keys())}, {"__type__": "update", "choices": list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update, { "__type__": "update", "visible": visible_sample_steps, "value": 32 if model_version == "v3" else 8, "choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], }, {"__type__": "update", "visible": visible_inp_refs}, {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False}, {"__type__": "update", "visible": True if model_version == "v3" else False}, {"__type__": "update", "value": i18n("合成语音"), "interactive": True}, ) with open("./weight.json") as f: data = f.read() data = json.loads(data) data["SoVITS"][version] = sovits_path with open("./weight.json", "w") as f: f.write(json.dumps(data)) try: next(change_sovits_weights(sovits_path)) except: pass def change_gpt_weights(gpt_path): if "!" in gpt_path or "!" in gpt_path: gpt_path = name2gpt_path[gpt_path] global hz, max_sec, t2s_model, config hz = 50 dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False) config = dict_s1["config"] max_sec = config["data"]["max_sec"] t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if is_half == True: t2s_model = t2s_model.half() t2s_model = t2s_model.to(device) t2s_model.eval() # total = sum([param.nelement() for param in t2s_model.parameters()]) # print("Number of parameter: %.2fM" % (total / 1e6)) with open("./weight.json") as f: data = f.read() data = json.loads(data) data["GPT"][version] = gpt_path with open("./weight.json", "w") as f: f.write(json.dumps(data)) change_gpt_weights(gpt_path) os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" now_dir = os.getcwd() def clean_hifigan_model(): global hifigan_model if hifigan_model: hifigan_model = hifigan_model.cpu() hifigan_model = None try: torch.cuda.empty_cache() except: pass def clean_bigvgan_model(): global bigvgan_model if bigvgan_model: bigvgan_model = bigvgan_model.cpu() bigvgan_model = None try: torch.cuda.empty_cache() except: pass def clean_sv_cn_model(): global sv_cn_model if sv_cn_model: sv_cn_model.embedding_model = sv_cn_model.embedding_model.cpu() sv_cn_model = None try: torch.cuda.empty_cache() except: pass def init_bigvgan(): global bigvgan_model, hifigan_model, sv_cn_model from BigVGAN import bigvgan bigvgan_model = bigvgan.BigVGAN.from_pretrained( "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % ( now_dir,), use_cuda_kernel=False, ) # if True, RuntimeError: Ninja is required to load C++ extensions # remove weight norm in the model and set to eval mode bigvgan_model.remove_weight_norm() bigvgan_model = bigvgan_model.eval() clean_hifigan_model() clean_sv_cn_model() if is_half == True: bigvgan_model = bigvgan_model.half().to(device) else: bigvgan_model = bigvgan_model.to(device) def init_hifigan(): global hifigan_model, bigvgan_model, sv_cn_model hifigan_model = Generator( initial_channel=100, resblock="1", resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], upsample_rates=[10, 6, 2, 2, 2], upsample_initial_channel=512, upsample_kernel_sizes=[20, 12, 4, 4, 4], gin_channels=0, is_bias=True, ) hifigan_model.eval() hifigan_model.remove_weight_norm() state_dict_g = torch.load( "%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % ( now_dir,), map_location="cpu", weights_only=False, ) print("loading vocoder", hifigan_model.load_state_dict(state_dict_g)) clean_bigvgan_model() clean_sv_cn_model() if is_half == True: hifigan_model = hifigan_model.half().to(device) else: hifigan_model = hifigan_model.to(device) def init_sv_cn(): global hifigan_model, bigvgan_model, sv_cn_model sv_cn_model = SV(device, is_half) clean_bigvgan_model() clean_hifigan_model() bigvgan_model = hifigan_model = sv_cn_model = None if model_version == "v3": init_bigvgan() if model_version == "v4": init_hifigan() if model_version in {"v2Pro", "v2ProPlus"}: init_sv_cn() resample_transform_dict = {} def resample(audio_tensor, sr0, sr1, device): global resample_transform_dict key = "%s-%s-%s" % (sr0, sr1, str(device)) if key not in resample_transform_dict: resample_transform_dict[key] = torchaudio.transforms.Resample( sr0, sr1).to(device) return resample_transform_dict[key](audio_tensor) def get_spepc(hps, filename, dtype, device, is_v2pro=False): # audio = load_audio(filename, int(hps.data.sampling_rate)) # audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate)) # audio = torch.FloatTensor(audio) sr1 = int(hps.data.sampling_rate) audio, sr0 = torchaudio.load(filename) if sr0 != sr1: audio = audio.to(device) if audio.shape[0] == 2: audio = audio.mean(0).unsqueeze(0) audio = resample(audio, sr0, sr1, device) else: audio = audio.to(device) if audio.shape[0] == 2: audio = audio.mean(0).unsqueeze(0) maxx = audio.abs().max() if maxx > 1: audio /= min(2, maxx) spec = spectrogram_torch( audio, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False, ) spec = spec.to(dtype) if is_v2pro == True: audio = resample(audio, sr1, 16000, device).to(dtype) return spec, audio def clean_text_inf(text, language, version): language = language.replace("all_", "") phones, word2ph, norm_text = clean_text(text, language, version) phones = cleaned_text_to_sequence(phones, version) return phones, word2ph, norm_text dtype = torch.float16 if is_half == True else torch.float32 def get_bert_inf(phones, word2ph, norm_text, language): language = language.replace("all_", "") if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) return bert splits = { ",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } def get_first(text): pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" text = re.split(pattern, text)[0].strip() return text def get_phones_and_bert(text, language, version, final=False): if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: formattext = text while " " in formattext: formattext = formattext.replace(" ", " ") if language == "all_zh": if re.search(r"[A-Za-z]", formattext): formattext = re.sub( r"[a-z]", lambda x: x.group(0).upper(), formattext) formattext = chinese.mix_text_normalize(formattext) return get_phones_and_bert(formattext, "zh", version) else: phones, word2ph, norm_text = clean_text_inf( formattext, language, version) bert = get_bert_feature(norm_text, word2ph).to(device) elif language == "all_yue" and re.search(r"[A-Za-z]", formattext): formattext = re.sub( r"[a-z]", lambda x: x.group(0).upper(), formattext) formattext = chinese.mix_text_normalize(formattext) return get_phones_and_bert(formattext, "yue", version) else: phones, word2ph, norm_text = clean_text_inf( formattext, language, version) bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: textlist = [] langlist = [] if language == "auto": for tmp in LangSegmenter.getTexts(text): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "auto_yue": for tmp in LangSegmenter.getTexts(text): if tmp["lang"] == "zh": tmp["lang"] = "yue" langlist.append(tmp["lang"]) textlist.append(tmp["text"]) else: for tmp in LangSegmenter.getTexts(text): if tmp["lang"] == "en": langlist.append(tmp["lang"]) else: # 因无法区别中日韩文汉字,以用户输入为准 langlist.append(language) textlist.append(tmp["text"]) print(textlist) print(langlist) phones_list = [] bert_list = [] norm_text_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf( textlist[i], lang, version) bert = get_bert_inf(phones, word2ph, norm_text, lang) phones_list.append(phones) norm_text_list.append(norm_text) bert_list.append(bert) bert = torch.cat(bert_list, dim=1) phones = sum(phones_list, []) norm_text = "".join(norm_text_list) if not final and len(phones) < 6: return get_phones_and_bert("." + text, language, version, final=True) return phones, bert.to(dtype), norm_text spec_min = -12 spec_max = 2 def norm_spec(x): return (x - spec_min) / (spec_max - spec_min) * 2 - 1 def denorm_spec(x): return (x + 1) / 2 * (spec_max - spec_min) + spec_min def mel_fn(x): return mel_spectrogram_torch( x, **{ "n_fft": 1024, "win_size": 1024, "hop_size": 256, "num_mels": 100, "sampling_rate": 24000, "fmin": 0, "fmax": None, "center": False, }, ) def mel_fn_v4(x): return mel_spectrogram_torch( x, **{ "n_fft": 1280, "win_size": 1280, "hop_size": 320, "num_mels": 100, "sampling_rate": 32000, "fmin": 0, "fmax": None, "center": False, }, ) def merge_short_text_in_array(texts, threshold): if (len(texts)) < 2: return texts result = [] text = "" for ele in texts: text += ele if len(text) >= threshold: result.append(text) text = "" if len(text) > 0: if len(result) == 0: result.append(text) else: result[len(result) - 1] += text return result sr_model = None def audio_sr(audio, sr): global sr_model if sr_model == None: from tools.audio_sr import AP_BWE try: sr_model = AP_BWE(device, DictToAttrRecursive) except FileNotFoundError: gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好")) return audio.cpu().detach().numpy(), sr return sr_model(audio, sr) # ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature # cache_tokens={}#暂未实现清理机制 cache = {} @torch.inference_mode() @spaces.GPU def get_tts_wav( ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free=False, speed=1, if_freeze=False, inp_refs=None, sample_steps=8, if_sr=False, pause_second=0.3, ): global cache if ref_wav_path: pass else: gr.Warning(i18n("请上传参考音频")) if text: pass else: gr.Warning(i18n("请填入推理文本")) t = [] if prompt_text is None or len(prompt_text) == 0: ref_free = True if model_version in v3v4set: ref_free = False # s2v3暂不支持ref_free else: if_sr = False if model_version not in {"v3", "v4", "v2Pro", "v2ProPlus"}: clean_bigvgan_model() clean_hifigan_model() clean_sv_cn_model() t0 = ttime() prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] if not ref_free: prompt_text = prompt_text.strip("\n") if prompt_text[-1] not in splits: prompt_text += "。" if prompt_language != "en" else "." print(i18n("实际输入的参考文本:"), prompt_text) text = text.strip("\n") # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text print(i18n("实际输入的目标文本:"), text) zero_wav = np.zeros( int(hps.data.sampling_rate * pause_second), dtype=np.float16 if is_half == True else np.float32, ) zero_wav_torch = torch.from_numpy(zero_wav) if is_half == True: zero_wav_torch = zero_wav_torch.half().to(device) else: zero_wav_torch = zero_wav_torch.to(device) if not ref_free: with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) wav16k = torch.from_numpy(wav16k) if is_half == True: wav16k = wav16k.half().to(device) else: wav16k = wav16k.to(device) wav16k = torch.cat([wav16k, zero_wav_torch]) ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ "last_hidden_state"].transpose(1, 2) # .float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] prompt = prompt_semantic.unsqueeze(0).to(device) t1 = ttime() t.append(t1 - t0) if how_to_cut == i18n("凑四句一切"): text = cut1(text) elif how_to_cut == i18n("凑50字一切"): text = cut2(text) elif how_to_cut == i18n("按中文句号。切"): text = cut3(text) elif how_to_cut == i18n("按英文句号.切"): text = cut4(text) elif how_to_cut == i18n("按标点符号切"): text = cut5(text) while "\n\n" in text: text = text.replace("\n\n", "\n") print(i18n("实际输入的目标文本(切句后):"), text) texts = text.split("\n") texts = process_text(texts) texts = merge_short_text_in_array(texts, 5) audio_opt = [] # s2v3暂不支持ref_free if not ref_free: phones1, bert1, norm_text1 = get_phones_and_bert( prompt_text, prompt_language, version) for i_text, text in enumerate(texts): # 解决输入目标文本的空行导致报错的问题 if len(text.strip()) == 0: continue if text[-1] not in splits: text += "。" if text_language != "en" else "." print(i18n("实际输入的目标文本(每句):"), text) phones2, bert2, norm_text2 = get_phones_and_bert( text, text_language, version) print(i18n("前端处理后的文本(每句):"), norm_text2) if not ref_free: bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor( phones1 + phones2).to(device).unsqueeze(0) else: bert = bert2 all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) t2 = ttime() # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature) # print(cache.keys(),if_freeze) if i_text in cache and if_freeze == True: pred_semantic = cache[i_text] else: with torch.no_grad(): pred_semantic, idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, None if ref_free else prompt, bert, # prompt_phone_len=ph_offset, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=hz * max_sec, ) pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) cache[i_text] = pred_semantic t3 = ttime() is_v2pro = model_version in {"v2Pro", "v2ProPlus"} # print(23333,is_v2pro,model_version) # v3不存在以下逻辑和inp_refs if model_version not in v3v4set: refers = [] if is_v2pro: sv_emb = [] if sv_cn_model == None: init_sv_cn() if inp_refs: for path in inp_refs: try: # 这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer refer, audio_tensor = get_spepc( hps, path.name, dtype, device, is_v2pro) refers.append(refer) if is_v2pro: sv_emb.append( sv_cn_model.compute_embedding3(audio_tensor)) except: traceback.print_exc() if len(refers) == 0: refers, audio_tensor = get_spepc( hps, ref_wav_path, dtype, device, is_v2pro) refers = [refers] if is_v2pro: sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)] if is_v2pro: audio = vq_model.decode( pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed, sv_emb=sv_emb )[0][0] else: audio = vq_model.decode( pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed )[0][0] else: refer, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device) phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0) phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0) fea_ref, ge = vq_model.decode_encp( prompt.unsqueeze(0), phoneme_ids0, refer) ref_audio, sr = torchaudio.load(ref_wav_path) ref_audio = ref_audio.to(device).float() if ref_audio.shape[0] == 2: ref_audio = ref_audio.mean(0).unsqueeze(0) tgt_sr = 24000 if model_version == "v3" else 32000 if sr != tgt_sr: ref_audio = resample(ref_audio, sr, tgt_sr, device) # print("ref_audio",ref_audio.abs().mean()) mel2 = mel_fn( ref_audio) if model_version == "v3" else mel_fn_v4(ref_audio) mel2 = norm_spec(mel2) T_min = min(mel2.shape[2], fea_ref.shape[2]) mel2 = mel2[:, :, :T_min] fea_ref = fea_ref[:, :, :T_min] Tref = 468 if model_version == "v3" else 500 Tchunk = 934 if model_version == "v3" else 1000 if T_min > Tref: mel2 = mel2[:, :, -Tref:] fea_ref = fea_ref[:, :, -Tref:] T_min = Tref chunk_len = Tchunk - T_min mel2 = mel2.to(dtype) fea_todo, ge = vq_model.decode_encp( pred_semantic, phoneme_ids1, refer, ge, speed) cfm_resss = [] idx = 0 while 1: fea_todo_chunk = fea_todo[:, :, idx: idx + chunk_len] if fea_todo_chunk.shape[-1] == 0: break idx += chunk_len fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) cfm_res = vq_model.cfm.inference( fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0 ) cfm_res = cfm_res[:, :, mel2.shape[2]:] mel2 = cfm_res[:, :, -T_min:] fea_ref = fea_todo_chunk[:, :, -T_min:] cfm_resss.append(cfm_res) cfm_res = torch.cat(cfm_resss, 2) cfm_res = denorm_spec(cfm_res) if model_version == "v3": if bigvgan_model == None: init_bigvgan() else: # v4 if hifigan_model == None: init_hifigan() vocoder_model = bigvgan_model if model_version == "v3" else hifigan_model with torch.inference_mode(): wav_gen = vocoder_model(cfm_res) audio = wav_gen[0][0] # .cpu().detach().numpy() max_audio = torch.abs(audio).max() # 简单防止16bit爆音 if max_audio > 1: audio = audio / max_audio audio_opt.append(audio) audio_opt.append(zero_wav_torch) # zero_wav t4 = ttime() t.extend([t2 - t1, t3 - t2, t4 - t3]) t1 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))) audio_opt = torch.cat(audio_opt, 0) # np.concatenate if model_version in {"v1", "v2", "v2Pro", "v2ProPlus"}: opt_sr = 32000 elif model_version == "v3": opt_sr = 24000 else: opt_sr = 48000 # v4 if if_sr == True and opt_sr == 24000: print(i18n("音频超分中")) audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr) max_audio = np.abs(audio_opt).max() if max_audio > 1: audio_opt /= max_audio else: audio_opt = audio_opt.cpu().detach().numpy() yield opt_sr, (audio_opt * 32767).astype(np.int16) def run( ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free=False, speed=1, if_freeze=False, inp_refs=None, sample_steps=8, if_sr=False, pause_second=0.3, uploadParams=None, errCallbackUrl=None ): try: result = get_tts_wav( ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_free, speed, if_freeze, inp_refs, sample_steps, if_sr, pause_second, ) opt_sr, audio_data = next(result) uploadAudio(opt_sr, audio_data, uploadParams) yield opt_sr, audio_data except Exception as e: errCallback(errCallbackUrl, e) yield 0, None def errCallback(errCallbackUrl, e): print('开始回调', errCallbackUrl) requests.post(errCallbackUrl, data={"error": str(e)}) def uploadAudio(opt_sr, audio_int16, uploadParams): if not uploadParams: return print('上传音频') uploadParams = json.loads(uploadParams) bio = io.BytesIO() write(bio, opt_sr, audio_int16) files = { "file": ("audio.wav", bio.getvalue(), "audio/wav") } url = uploadParams['url'] del uploadParams['url'] response = requests.post(url, files=files, data=uploadParams) print('上传结果', response.json()) def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if todo_text[-1] not in splits: todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while 1: if i_split_head >= len_text: break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 if todo_text[i_split_head] in splits: i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def cut1(inp): inp = inp.strip("\n") inps = split(inp) split_idx = list(range(0, len(inps), 4)) split_idx[-1] = None if len(split_idx) > 1: opts = [] for idx in range(len(split_idx) - 1): opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) else: opts = [inp] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut2(inp): inp = inp.strip("\n") inps = split(inp) if len(inps) < 2: return inp opts = [] summ = 0 tmp_str = "" for i in range(len(inps)): summ += len(inps[i]) tmp_str += inps[i] if summ > 50: summ = 0 opts.append(tmp_str) tmp_str = "" if tmp_str != "": opts.append(tmp_str) # print(opts) if len(opts) > 1 and len(opts[-1]) < 50: # 如果最后一个太短了,和前一个合一起 opts[-2] = opts[-2] + opts[-1] opts = opts[:-1] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut3(inp): inp = inp.strip("\n") opts = ["%s" % item for item in inp.strip("。").split("。")] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut4(inp): inp = inp.strip("\n") opts = re.split(r"(? 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): items.append(char) else: items.append(char) mergeitems.append("".join(items)) items = [] else: items.append(char) if items: mergeitems.append("".join(items)) opt = [item for item in mergeitems if not set(item).issubset(punds)] return "\n".join(opt) def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 parts = re.split("(\d+)", s) # 将数字部分转换为整数,非数字部分保持不变 parts = [int(part) if part.isdigit() else part for part in parts] return parts def process_text(texts): _text = [] if all(text in [None, " ", "\n", ""] for text in texts): raise ValueError(i18n("请输入有效文本")) for text in texts: if text in [None, " ", ""]: pass else: _text.append(text) return _text def html_center(text, label="p"): return f"""
<{label} style="margin: 0; padding: 0;">{text}
""" def html_left(text, label="p"): return f"""
<{label} style="margin: 0; padding: 0;">{text}
""" with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app: gr.HTML( top_html.format( i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") ), elem_classes="markdown", ) with gr.Group(): # gr.Markdown(html_center(i18n("模型切换"), "h3")) # with gr.Row(): # GPT_dropdown = gr.Dropdown( # label=i18n("GPT模型列表"), # choices=sorted(GPT_names, key=custom_sort_key), # value=gpt_path, # interactive=True, # scale=14, # ) # SoVITS_dropdown = gr.Dropdown( # label=i18n("SoVITS模型列表"), # choices=sorted(SoVITS_names, key=custom_sort_key), # value=sovits_path, # interactive=True, # scale=14, # ) # refresh_button = gr.Button( # i18n("刷新模型路径"), variant="primary", scale=14) # refresh_button.click(fn=change_choices, inputs=[], outputs=[ # SoVITS_dropdown, GPT_dropdown]) gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3")) with gr.Row(): with gr.Column(): inp_ref = gr.Audio(label=i18n( "请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13) uploadParams = gr.Textbox(label=i18n("成功结果上传参数"), value="", lines=1, max_lines=1) errCallbackUrl = gr.Textbox(label=i18n("失败回调地址"), value="", lines=1, max_lines=1) with gr.Column(scale=13): ref_text_free = gr.Checkbox( label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。") + i18n("v3暂不支持该模式,使用了会报错。"), value=False, interactive=True if model_version not in v3v4set else False, show_label=True, scale=1, ) gr.Markdown( html_left( i18n("使用无参考文本模式时建议使用微调的GPT") + "
" + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。") ) ) prompt_text = gr.Textbox(label=i18n( "参考音频的文本"), value="", lines=6, max_lines=6, scale=1) with gr.Column(scale=14): prompt_language = gr.Dropdown( label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"), ) inp_refs = ( gr.File( label=i18n( "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。" ), file_count="multiple", ) if model_version not in v3v4set else gr.File( label=i18n( "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。" ), file_count="multiple", visible=False, ) ) sample_steps = ( gr.Radio( label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"), value=32 if model_version == "v3" else 8, choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [ 4, 8, 16, 32], visible=True, ) if model_version in v3v4set else gr.Radio( label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"), choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [ 4, 8, 16, 32], visible=False, value=32 if model_version == "v3" else 8, ) ) if_sr_Checkbox = gr.Checkbox( label=i18n("v3输出如果觉得闷可以试试开超分"), value=False, interactive=True, show_label=True, visible=False if model_version != "v3" else True, ) gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3")) with gr.Row(): with gr.Column(scale=13): text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26) with gr.Column(scale=7): text_language = gr.Dropdown( label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文"), scale=1, ) how_to_cut = gr.Dropdown( label=i18n("怎么切"), choices=[ i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], value=i18n("凑四句一切"), interactive=True, scale=1, ) gr.Markdown(value=html_center(i18n("语速调整,高为更快"))) if_freeze = gr.Checkbox( label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True, show_label=True, scale=1, ) with gr.Row(): speed = gr.Slider( minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1 ) pause_second_slider = gr.Slider( minimum=0.1, maximum=0.5, step=0.01, label=i18n("句间停顿秒数"), value=0.3, interactive=True, scale=1, ) gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):"))) top_k = gr.Slider( minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1 ) top_p = gr.Slider( minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1 ) temperature = gr.Slider( minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1 ) # with gr.Column(): # gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。")) # phoneme=gr.Textbox(label=i18n("音素框"), value="") # get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary") with gr.Row(): inference_button = gr.Button(value=i18n( "合成语音"), variant="primary", size="lg", scale=25) output = gr.Audio(label=i18n("输出的语音"), scale=14) inference_button.click( run, [ inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free, speed, if_freeze, inp_refs, sample_steps, if_sr_Checkbox, pause_second_slider, uploadParams, errCallbackUrl ], [output], ) # SoVITS_dropdown.change( # change_sovits_weights, # [SoVITS_dropdown, prompt_language, text_language], # [ # prompt_language, # text_language, # prompt_text, # prompt_language, # text, # text_language, # sample_steps, # inp_refs, # ref_text_free, # if_sr_Checkbox, # inference_button, # ], # ) # GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) # gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) # with gr.Row(): # text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") # button1 = gr.Button(i18n("凑四句一切"), variant="primary") # button2 = gr.Button(i18n("凑50字一切"), variant="primary") # button3 = gr.Button(i18n("按中文句号。切"), variant="primary") # button4 = gr.Button(i18n("按英文句号.切"), variant="primary") # button5 = gr.Button(i18n("按标点符号切"), variant="primary") # text_opt = gr.Textbox(label=i18n("切分后文本"), value="") # button1.click(cut1, [text_inp], [text_opt]) # button2.click(cut2, [text_inp], [text_opt]) # button3.click(cut3, [text_inp], [text_opt]) # button4.click(cut4, [text_inp], [text_opt]) # button5.click(cut5, [text_inp], [text_opt]) # gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))) if __name__ == "__main__": app.launch()