Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool | |
from dotenv import load_dotenv | |
import heapq | |
from collections import Counter | |
import re | |
from io import BytesIO | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.utilities import WikipediaAPIWrapper | |
from langchain_community.document_loaders import ArxivLoader | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
#Load environment variables | |
load_dotenv() | |
from langgraph.graph import END, StateGraph | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage | |
from langchain_core.tools import tool | |
from typing import Dict, List, TypedDict, Annotated | |
import operator | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_community.chat_models import ChatHuggingFace | |
from langchain.schema import HumanMessage # Or your framework's equivalent | |
def init_state(question: str): | |
return { | |
"question": question, | |
"history": [HumanMessage(content=question)], | |
"context": {} # <- Add this line | |
} | |
# ====== Tool Definitions ====== | |
def duckduckgo_search(query: str) -> str: | |
"""Search web using DuckDuckGo. Returns top 3 results.""" | |
from duckduckgo_search import DDGS | |
with DDGS() as ddgs: | |
return "\n\n".join( | |
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}" | |
for res in ddgs.text(query, max_results=3) | |
) | |
def wikipedia_search(query: str) -> str: | |
"""Get Wikipedia summaries. Returns first 3 sentences.""" | |
import wikipedia | |
try: | |
return wikipedia.summary(query, sentences=3) | |
except wikipedia.DisambiguationError as e: | |
return f"Disambiguation options: {', '.join(e.options[:3])}" | |
except wikipedia.PageError: | |
return "Page not found" | |
def arxiv_search(query: str) -> str: | |
"""Search academic papers on arXiv. Returns top 3 results.""" | |
import arxiv | |
results = arxiv.Search( | |
query=query, | |
max_results=3, | |
sort_by=arxiv.SortCriterion.Relevance | |
).results() | |
return "\n\n".join( | |
f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n" | |
f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..." | |
for r in results | |
) | |
def document_qa(input_str: str) -> str: | |
"""Answer questions from documents. Input format: 'document_text||question'""" | |
from transformers import pipeline | |
if '||' not in input_str: | |
return "Invalid format. Use: 'document_text||question'" | |
context, question = input_str.split('||', 1) | |
qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2') | |
return qa_model(question=question, context=context)['answer'] | |
def python_execution(code: str) -> str: | |
"""Execute Python code and return output.""" | |
try: | |
# Create isolated environment | |
env = {} | |
exec(f"def __exec_fn__():\n {indent_code(code)}\nresult = __exec_fn__()", env) | |
return str(env.get('result', 'No output')) | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def indent_code(code: str) -> str: | |
return '\n '.join(code.splitlines()) | |
# ====== Agent State ====== | |
class AgentState(TypedDict): | |
question: str | |
history: Annotated[List[Dict], operator.add] | |
context: str | |
reasoning: str | |
iterations: int | |
# ====== Graph Components ====== | |
def init_state(question: str) -> AgentState: | |
return { | |
"question": question, | |
"history": [], | |
"context": f"User question: {question}", | |
"reasoning": "", | |
"iterations": 0 | |
} | |
def should_continue(state: AgentState) -> str: | |
"""Determine if agent should continue or finish""" | |
last_msg = state['history'][-1] | |
# Stop conditions | |
if state['iterations'] >= 5: | |
return "end" | |
if "FINAL ANSWER:" in last_msg.get('content', ''): | |
return "end" | |
if last_msg['role'] == 'tool': | |
return "reason" | |
return "continue" | |
def reasoning_node(state: AgentState) -> AgentState: | |
"""Agent reasoning and tool selection""" | |
# Get Hugging Face API token from environment | |
token = os.environ.get("HF_TOKEN") | |
if not token: | |
raise ValueError("Hugging Face API token not found in environment variables") | |
history = state["history"] | |
# FIX: Add a HumanMessage if the last message is not one | |
if not isinstance(history[-1], HumanMessage): | |
raise ValueError("Last message in history must be a HumanMessage") | |
# Create the underlying LLM model | |
llm = HuggingFaceHub( | |
repo_id="HuggingFaceH4/zephyr-7b-beta", | |
huggingfacehub_api_token=token, | |
model_kwargs={ | |
"temperature": 0.1, | |
"max_new_tokens": 500 | |
} | |
) | |
# Wrap the LLM in ChatHuggingFace | |
chat_model = ChatHuggingFace(llm=llm) | |
# Build prompt | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", ( | |
"You're an expert problem solver. Analyze the question, select the best tool, " | |
"and provide reasoning. Available tools: duckduckgo_search, wikipedia_search, " | |
"arxiv_search, document_qa, python_execution.\n\n" | |
"Current Context:\n{context}\n\n" | |
"Reasoning Steps:\n{reasoning}\n\n" | |
"Response Format:\nReasoning: [Your analysis]\nAction: [Tool name OR 'Final Answer']\n" | |
"Action Input: [Input for tool OR final response]" | |
)), | |
*state['history'] | |
]) | |
chain = prompt | chat_model | |
response = chain.invoke({ | |
"context": state['context'], | |
"reasoning": state['reasoning'], | |
"question": state['question'] | |
}) | |
# Parse response | |
content = response.content | |
reasoning, action, action_input = parse_agent_response(content) | |
# Update state | |
state['history'].append(AIMessage(content=content)) | |
state['reasoning'] += f"\nStep {state['iterations']+1}: {reasoning}" | |
if "final answer" in action.lower(): | |
state['history'].append(AIMessage(content=f"FINAL ANSWER: {action_input}")) | |
else: | |
state['history'].append({ | |
"tool": action, | |
"input": action_input, | |
"role": "action_request" | |
}) | |
return state | |
def tool_node(state: AgentState) -> AgentState: | |
"""Execute selected tool and update state""" | |
last_action = state['history'][-1] | |
tool_name = last_action['tool'] | |
tool_input = last_action['input'] | |
# Tool mapping | |
tools = { | |
"duckduckgo_search": duckduckgo_search, | |
"wikipedia_search": wikipedia_search, | |
"arxiv_search": arxiv_search, | |
"document_qa": document_qa, | |
"python_execution": python_execution | |
} | |
# Execute tool | |
tool_result = tools[tool_name].invoke(tool_input) | |
# Update state | |
state['history'].append(ToolMessage( | |
content=tool_result, | |
tool_call_id=tool_name | |
)) | |
state['context'] = f"Tool Result ({tool_name}): {tool_result}" | |
state['iterations'] += 1 | |
return state | |
def parse_agent_response(response: str) -> tuple: | |
"""Extract reasoning, action, and input from response""" | |
reasoning = response.split("Reasoning:")[1].split("Action:")[0].strip() | |
action_part = response.split("Action:")[1].strip() | |
if "Action Input:" in action_part: | |
action, action_input = action_part.split("Action Input:", 1) | |
action = action.strip() | |
action_input = action_input.strip() | |
else: | |
action = action_part | |
action_input = "" | |
return reasoning, action, action_input | |
# ====== Agent Graph ====== | |
def create_agent_workflow(): | |
workflow = StateGraph(AgentState) | |
# Define nodes | |
workflow.add_node("reason", reasoning_node) | |
workflow.add_node("action", tool_node) | |
# Set entry point | |
workflow.set_entry_point("reason") | |
# Define edges | |
workflow.add_conditional_edges( | |
"reason", | |
should_continue, | |
{ | |
"continue": "action", | |
"reason": "reason", | |
"end": END | |
} | |
) | |
workflow.add_edge("action", "reason") | |
return workflow.compile() | |
# ====== Agent Interface ====== | |
class BasicAgent: | |
def __init__(self): | |
self.workflow = create_agent_workflow() | |
self.tools = [ | |
duckduckgo_search, | |
wikipedia_search, | |
arxiv_search, | |
document_qa, | |
python_execution | |
] | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question: {question[:50]}{'...' if len(question) > 50 else ''}") | |
# Ensure proper HumanMessage in history | |
state = init_state(question) | |
final_state = self.workflow.invoke(state) | |
print(f"Final state keys: {list(final_state.keys())}") | |
if 'history' in final_state: | |
print(f"History length: {len(final_state['history'])}") | |
for i, msg in enumerate(final_state['history']): | |
print(f"Message {i}: {type(msg).__name__} - {msg.content[:100]}...") | |
for msg in reversed(final_state['history']): | |
if isinstance(msg, AIMessage) and "FINAL ANSWER:" in msg.content: | |
answer = msg.content.split("FINAL ANSWER:")[1].strip() | |
print(f"Agent returning answer: {answer}") | |
return answer | |
raise ValueError("No FINAL ANSWER found in agent history.") | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |