Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool | |
from dotenv import load_dotenv | |
import heapq | |
from collections import Counter | |
import re | |
from io import BytesIO | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.utilities import WikipediaAPIWrapper | |
from langchain_community.document_loaders import ArxivLoader | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
#Load environment variables | |
load_dotenv() | |
from langgraph.graph import END, StateGraph | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage | |
from langchain_core.tools import tool | |
from typing import Dict, List, TypedDict, Annotated | |
import operator | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_community.chat_models import ChatHuggingFace | |
from langchain.schema import HumanMessage # Or your framework's equivalent | |
def init_state(question: str): | |
return { | |
"question": question, | |
"history": [HumanMessage(content=question)], | |
"context": {} # <- Add this line | |
} | |
# ====== Tool Definitions ====== | |
def duckduckgo_search(query: str) -> str: | |
"""Search web using DuckDuckGo. Returns top 3 results.""" | |
from duckduckgo_search import DDGS | |
with DDGS() as ddgs: | |
return "\n\n".join( | |
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}" | |
for res in ddgs.text(query, max_results=3) | |
) | |
def wikipedia_search(query: str) -> str: | |
"""Get Wikipedia summaries. Returns first 3 sentences.""" | |
import wikipedia | |
try: | |
return wikipedia.summary(query, sentences=3) | |
except wikipedia.DisambiguationError as e: | |
return f"Disambiguation options: {', '.join(e.options[:3])}" | |
except wikipedia.PageError: | |
return "Page not found" | |
def arxiv_search(query: str) -> str: | |
"""Search academic papers on arXiv. Returns top 3 results.""" | |
import arxiv | |
results = arxiv.Search( | |
query=query, | |
max_results=3, | |
sort_by=arxiv.SortCriterion.Relevance | |
).results() | |
return "\n\n".join( | |
f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n" | |
f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..." | |
for r in results | |
) | |
def document_qa(input_str: str) -> str: | |
"""Answer questions from documents. Input format: 'document_text||question'""" | |
from transformers import pipeline | |
if '||' not in input_str: | |
return "Invalid format. Use: 'document_text||question'" | |
context, question = input_str.split('||', 1) | |
qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2') | |
return qa_model(question=question, context=context)['answer'] | |
def python_execution(code: str) -> str: | |
"""Execute Python code and return output.""" | |
try: | |
# Create isolated environment | |
env = {} | |
exec(f"def __exec_fn__():\n {indent_code(code)}\nresult = __exec_fn__()", env) | |
return str(env.get('result', 'No output')) | |
except Exception as e: | |
return f"Error: {str(e)}" | |
from typing import Optional | |
from langchain_core.tools import BaseTool | |
from youtube_transcript_api import YouTubeTranscriptApi | |
class VideoTranscriptionTool(BaseTool): | |
name: str = "transcript_video" | |
description: str = "Fetch text transcript from YouTube videos using URL or ID. Optionally include timestamps." | |
def _run(self, url: str, include_timestamps: Optional[bool] = False) -> str: | |
# Extract video ID | |
video_id = None | |
if "youtube.com/watch?v=" in url: | |
video_id = url.split("v=")[1].split("&")[0] | |
elif "youtu.be/" in url: | |
video_id = url.split("youtu.be/")[1].split("?")[0] | |
elif len(url.strip()) == 11 and not ("http://" in url or "https://" in url): | |
video_id = url.strip() | |
if not video_id: | |
return f"Invalid or unsupported YouTube URL/ID: {url}" | |
try: | |
transcription = YouTubeTranscriptApi.get_transcript(video_id) | |
if include_timestamps: | |
formatted = [] | |
for part in transcription: | |
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}" | |
formatted.append(f"[{timestamp}] {part['text']}") | |
return "\n".join(formatted) | |
else: | |
return " ".join([part['text'] for part in transcription]) | |
except Exception as e: | |
return f"Error fetching transcript: {str(e)}" | |
def _arun(self, *args, **kwargs): | |
raise NotImplementedError("Async not supported for this tool.") | |
import os | |
import time | |
import json | |
from typing import TypedDict, List, Union, Any, Dict | |
from langchain_huggingface import ChatHuggingFace | |
from langchain_huggingface.llms import HuggingFaceEndpoint | |
from langchain.schema import HumanMessage, AIMessage, SystemMessage | |
from langchain.prompts import ChatPromptTemplate | |
from langgraph.graph import StateGraph, END | |
from langchain.tools import Tool | |
# Assume these tools are defined elsewhere and imported | |
# Placeholder for your actual tool implementations | |
def duckduckgo_search(query: str) -> str: | |
"""Performs a DuckDuckGo search for current events or general facts.""" | |
print(f"DEBUG: duckduckgo_search called with: {query}") | |
return f"Search result for '{query}': Example relevant information from web." | |
def wikipedia_search(query: str) -> str: | |
"""Searches Wikipedia for encyclopedic information.""" | |
print(f"DEBUG: wikipedia_search called with: {query}") | |
return f"Wikipedia result for '{query}': Found detailed article." | |
def arxiv_search(query: str) -> str: | |
"""Searches ArXiv for scientific preprints and papers.""" | |
print(f"DEBUG: arxiv_search called with: {query}") | |
return f"ArXiv result for '{query}': Found relevant research paper." | |
def document_qa(document_path: str, question: str) -> str: | |
"""Answers questions based on the content of a given document file (PDF, DOCX, TXT).""" | |
print(f"DEBUG: document_qa called with: {document_path}, question: {question}") | |
return f"Document QA result for '{question}': Answer extracted from document." | |
def python_execution(code: str) -> str: | |
"""Executes Python code in a sandboxed environment for calculations or data manipulation.""" | |
try: | |
exec_globals = {} | |
exec_locals = {} | |
# WARNING: This is a highly insecure way to execute arbitrary Python code. | |
# For production, use a secure, sandboxed environment (e.g., Docker container, dedicated service). | |
exec(code, exec_globals, exec_locals) | |
return str(exec_locals.get('result', 'Code executed, no explicit result assigned to "result" variable.')) | |
except Exception as e: | |
return f"Python execution error: {str(e)}" | |
class VideoTranscriptionTool: | |
"""Transcribes and analyzes video content from a URL or ID.""" | |
def __call__(self, video_id_or_url: str) -> str: | |
print(f"DEBUG: VideoTranscriptionTool called with: {video_id_or_url}") | |
return f"Video transcription/analysis result for '{video_id_or_url}': Summary of video content." | |
# --- Agent State Definition --- | |
class AgentState(TypedDict): | |
question: str | |
history: List[Union[HumanMessage, AIMessage]] # History only contains proper messages | |
context: Dict[str, Any] # Use context for internal agent state | |
reasoning: str | |
iterations: int | |
final_answer: Union[str, float, int, None] | |
current_task: str | |
current_thoughts: str | |
tools: List[Tool] # Pass tools into state | |
# --- Utility Functions --- | |
def parse_agent_response(response_content: str) -> tuple[str, str, str]: | |
""" | |
Parses the LLM's JSON output for reasoning, action, and action input. | |
""" | |
try: | |
response_json = json.loads(response_content) | |
reasoning = response_json.get("Reasoning", "").strip() | |
action = response_json.get("Action", "").strip() | |
action_input = response_json.get("Action Input", "").strip() | |
return reasoning, action, action_input | |
except json.JSONDecodeError: | |
print(f"WARNING: LLM response not perfectly JSON: {response_content[:200]}...") | |
# Fallback heuristic parsing (less reliable but better than nothing) | |
reasoning_match = response_content.split("Reasoning:", 1) | |
reasoning = reasoning_match[1].split("Action:", 1)[0].strip() if len(reasoning_match) > 1 else "" | |
action_part_match = response_content.split("Action:", 1) | |
action_part = action_part_match[1].strip() if len(action_part_match) > 1 else "" | |
action_input_match = action_part.split("Action Input:", 1) | |
action = action_input_match[0].strip() | |
action_input = action_input_match[1].strip() if len(action_input_match) > 1 else "" | |
return reasoning, action, action_input | |
# --- Graph Nodes --- | |
def should_continue(state: AgentState) -> str: | |
""" | |
Determines if the agent should continue reasoning, use a tool, or end. | |
""" | |
print(f"DEBUG: Entering should_continue. Current context: {state.get('context', {})}") | |
# End if agent has produced a final answer | |
if state.get("final_answer") is not None: # Check for None explicitly | |
print("DEBUG: should_continue -> END (Final Answer set in state)") | |
return "end" | |
# Check if a tool action is pending in context | |
if state.get("context", {}).get("pending_action"): | |
print("DEBUG: should_continue -> ACTION (Pending action in context)") | |
return "action" | |
# Otherwise, go back to reasoning (e.g., after initial question, or after tool output) | |
print("DEBUG: should_continue -> REASON (Default to reasoning)") | |
return "reason" | |
def reasoning_node(state: AgentState) -> AgentState: | |
""" | |
Node for the agent to analyze the question, determine next steps, | |
and select tools. | |
""" | |
print(f"DEBUG: Entering reasoning_node. Iteration: {state['iterations']}") | |
print(f"DEBUG: Current history length: {len(state.get('history', []))}") | |
# --- CHANGE: Use HF_TOKEN environment variable --- | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if not HF_TOKEN: | |
raise ValueError("HF_TOKEN not set in environment variables.") | |
# --- END CHANGE --- | |
state.setdefault("context", {}) | |
state.setdefault("reasoning", "") | |
state.setdefault("iterations", 0) | |
state.setdefault("current_task", "Understand the question and plan the next step.") | |
state.setdefault("current_thoughts", "") | |
state["context"].pop("pending_action", None) | |
model_id = "meta-llama/Llama-2-7b-chat-hf" | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=512, | |
temperature=0.1, | |
huggingfacehub_api_token=HF_TOKEN, # --- CHANGE: Pass HF_TOKEN here --- | |
) | |
) | |
tool_descriptions = "\n".join([ | |
f"- **{t.name}**: {t.description}" for t in state.get("tools", []) | |
]) | |
system_prompt = ( | |
"You are an expert problem solver, designed to provide concise and accurate answers. " | |
"Your process involves analyzing the question, intelligently selecting and using tools, " | |
"and synthesizing information.\n\n" | |
"**Available Tools:**\n" | |
f"{tool_descriptions}\n\n" | |
"**Tool Usage Guidelines:**\n" | |
"- Use **duckduckgo_search** for current events, general facts, or quick lookups.\n" | |
"- Use **wikipedia_search** for encyclopedic information, historical context, or detailed topics.\n" | |
"- Use **arxiv_search** for scientific papers, research, or cutting-edge technical information.\n" | |
"- Use **document_qa** when the question explicitly refers to a specific document file (e.g., 'Analyze this PDF').\n" | |
"- Use **python_execution** for complex calculations, data manipulation, or logical operations that cannot be done with simple reasoning. Always provide the full Python code, ensuring it's valid and executable, and assign the final result to a variable named 'result' if applicable.\n" | |
"- Use **VideoTranscriptionTool** for any question involving video or audio content. Provide the full YouTube URL or video ID.\n\n" | |
"**Current Context:**\n{context}\n\n" | |
"**Previous Reasoning Steps:**\n{reasoning}\n\n" | |
"**Current Task:** {current_task}\n" | |
"**Current Thoughts:** {current_thoughts}\n\n" | |
"**Your Response MUST be a valid JSON object with the following keys:**\n" | |
"```json\n" | |
"{\n" | |
" \"Reasoning\": \"Your detailed analysis of the question and why you chose a specific action.\",\n" | |
" \"Action\": \"[Tool name OR 'Final Answer']\",\n" | |
" \"Action Input\": \"[Input for the selected tool OR the final response]\"\n" | |
"}\n" | |
"```\n" | |
"**CRITICAL RULE: 'Action' and 'Action Input' MUST NOT be empty, unless 'Action' is 'Final Answer' and 'Action Input' is the conclusive response.**\n" | |
"If you cannot determine a suitable tool or a final answer, return Action: 'Final Answer' with a message like 'I cannot answer this question with the available tools.' or 'More information is needed.'\n" | |
"Ensure 'Action Input' is appropriate for the chosen 'Action'. If 'Action' is 'Final Answer', provide the complete, concise answer." | |
) | |
prompt = ChatPromptTemplate.from_messages([ | |
SystemMessage(content=system_prompt), | |
*state["history"] | |
]) | |
chain = prompt | llm | |
def call_with_retry(inputs, retries=3, delay=30): | |
for attempt in range(retries): | |
try: | |
response = chain.invoke(inputs) | |
json.loads(response.content) | |
return response | |
except json.JSONDecodeError as e: | |
print(f"[Retry {attempt+1}/{retries}] LLM returned invalid JSON. Retrying...") | |
print(f"Invalid JSON content: {response.content[:200]}...") | |
time.sleep(5) | |
except Exception as e: | |
print(f"[Retry {attempt+1}/{retries}] An unexpected error occurred during LLM call: {e}. Waiting {delay}s...") | |
time.sleep(delay) | |
raise RuntimeError("Failed after multiple retries due to Hugging Face API issues or invalid JSON.") | |
response = call_with_retry({ | |
"context": state["context"], | |
"reasoning": state["reasoning"], | |
"question": state["question"], | |
"current_task": state["current_task"], | |
"current_thoughts": state["current_thoughts"] | |
}) | |
content = response.content | |
reasoning, action, action_input = parse_agent_response(content) | |
print(f"DEBUG: LLM Raw Response Content: {content[:200]}...") | |
print(f"DEBUG: Parsed Action: '{action}', Action Input: '{action_input[:100]}...'") | |
state["history"].append(AIMessage(content=content)) | |
state["reasoning"] += f"\nStep {state['iterations'] + 1}: {reasoning}" | |
state["iterations"] += 1 | |
state["current_thoughts"] = reasoning | |
if "final answer" in action.lower(): | |
state["final_answer"] = action_input | |
else: | |
state["context"]["pending_action"] = { | |
"tool": action, | |
"input": action_input | |
} | |
state["history"].append(AIMessage(content=f"Agent decided to use tool: {action} with input: {action_input}")) | |
print(f"DEBUG: Exiting reasoning_node. New history length: {len(state['history'])}") | |
return state | |
def tool_node(state: AgentState) -> AgentState: | |
""" | |
Node for executing the chosen tool and returning its output. | |
""" | |
print(f"DEBUG: Entering tool_node. Iteration: {state['iterations']}") | |
tool_call_dict = state["context"].pop("pending_action", None) | |
if not tool_call_dict: | |
error_message = "[Tool Error] No pending_action found in context. This indicates an issue with graph flow." | |
print(f"ERROR: {error_message}") | |
state["history"].append(AIMessage(content=error_message)) | |
return state | |
tool_name = tool_call_dict.get("tool") | |
tool_input = tool_call_dict.get("input") | |
if not tool_name or tool_input is None: | |
error_message = f"[Tool Error] Invalid action request from LLM: Tool name '{tool_name}' or input '{tool_input}' was empty. LLM needs to provide valid 'Action' and 'Action Input'." | |
print(f"ERROR: {error_message}") | |
state["history"].append(AIMessage(content=error_message)) | |
state["context"].pop("pending_action", None) | |
return state | |
available_tools = state.get("tools", []) | |
tool_fn = next((t for t in available_tools if t.name == tool_name), None) | |
if tool_fn is None: | |
tool_output = f"[Tool Error] Tool '{tool_name}' not found or not available. Please choose from: {', '.join([t.name for t in available_tools])}" | |
print(f"ERROR: {tool_output}") | |
else: | |
try: | |
print(f"DEBUG: Invoking tool '{tool_name}' with input: '{tool_input[:100]}...'") | |
tool_output = tool_fn.run(tool_input) | |
if not tool_output and tool_output is not False: | |
tool_output = f"[{tool_name} output] No specific result found for '{tool_input}'. The tool might have returned an empty response." | |
except Exception as e: | |
tool_output = f"[Tool Error] An error occurred while running '{tool_name}': {str(e)}" | |
print(f"ERROR: {tool_output}") | |
state["history"].append(AIMessage(content=f"[{tool_name} output]\n{tool_output}")) | |
print(f"DEBUG: Exiting tool_node. Tool output added to history. New history length: {len(state['history'])}") | |
return state | |
# ====== Agent Graph ====== | |
def create_agent_workflow(tools: List[Tool]): | |
workflow = StateGraph(AgentState) | |
workflow.add_node("reason", reasoning_node) | |
workflow.add_node("action", tool_node) | |
workflow.set_entry_point("reason") | |
workflow.add_conditional_edges( | |
"reason", | |
should_continue, | |
{ | |
"action": "action", | |
"reason": "reason", | |
"end": END | |
} | |
) | |
workflow.add_edge("action", "reason") | |
app = workflow.compile() | |
return app | |
# ====== Agent Interface ====== | |
class BasicAgent: | |
def __init__(self): | |
self.tools = [ | |
Tool(name="duckduckgo_search", func=duckduckgo_search, description="Performs a DuckDuckGo search for current events or general facts."), | |
Tool(name="wikipedia_search", func=wikipedia_search, description="Searches Wikipedia for encyclopedic information."), | |
Tool(name="arxiv_search", func=arxiv_search, description="Searches ArXiv for scientific preprints and papers."), | |
Tool(name="document_qa", func=document_qa, description="Answers questions based on the content of a given document file (PDF, DOCX, TXT). Requires 'document_path' and 'question' as input."), | |
Tool(name="python_execution", func=python_execution, description="Executes Python code in a sandboxed environment for complex calculations or data manipulation."), | |
Tool(name="VideoTranscriptionTool", func=VideoTranscriptionTool(), description="Transcribes and analyzes video content from a URL or ID. Use for any question involving video or audio.") | |
] | |
self.workflow = create_agent_workflow(self.tools) | |
def __call__(self, question: str) -> str: | |
print(f"\n--- Agent received question: {question[:80]}{'...' if len(question) > 80 else ''} ---") | |
state = { | |
"question": question, | |
"context": {}, | |
"reasoning": "", | |
"iterations": 0, | |
"history": [HumanMessage(content=question)], | |
"final_answer": None, | |
"current_task": "Understand the question and plan the next step.", | |
"current_thoughts": "", | |
"tools": self.tools | |
} | |
final_state = self.workflow.invoke(state) | |
if final_state.get("final_answer") is not None: | |
answer = final_state["final_answer"] | |
print(f"--- Agent returning FINAL ANSWER: {answer} ---") | |
return answer | |
else: | |
print(f"--- ERROR: Agent finished without setting 'final_answer' for question: {question} ---") | |
raise ValueError("Agent finished without providing a final answer.") | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |