Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool | |
from dotenv import load_dotenv | |
import heapq | |
from collections import Counter | |
import re | |
from io import BytesIO | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.utilities import WikipediaAPIWrapper | |
from langchain_community.document_loaders import ArxivLoader | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
#Load environment variables | |
load_dotenv() | |
from duckduckgo_search import DDGS | |
import wikipedia | |
import arxiv | |
from transformers import pipeline | |
import os | |
import re | |
import ast | |
import subprocess | |
import sys | |
# ===== Search Tools ===== | |
class DuckDuckGoSearchTool: | |
def __init__(self, max_results=3): | |
self.description = "Search web using DuckDuckGo. Input: search query" | |
self.max_results = max_results | |
def run(self, query: str) -> str: | |
try: | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=self.max_results)] | |
return "\n\n".join( | |
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}" | |
for res in results | |
) | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
class WikiSearchTool: | |
def __init__(self, sentences=3): | |
self.description = "Get Wikipedia summaries. Input: search phrase" | |
self.sentences = sentences | |
def run(self, query: str) -> str: | |
try: | |
return wikipedia.summary(query, sentences=self.sentences) | |
except wikipedia.DisambiguationError as e: | |
return f"Disambiguation error. Options: {', '.join(e.options[:5])}" | |
except wikipedia.PageError: | |
return "Page not found" | |
except Exception as e: | |
return f"Wikipedia error: {str(e)}" | |
class ArxivSearchTool: | |
def __init__(self, max_results=3): | |
self.description = "Search academic papers on arXiv. Input: search query" | |
self.max_results = max_results | |
def run(self, query: str) -> str: | |
try: | |
results = arxiv.Search( | |
query=query, | |
max_results=self.max_results, | |
sort_by=arxiv.SortCriterion.Relevance | |
).results() | |
output = [] | |
for r in results: | |
output.append( | |
f"Title: {r.title}\n" | |
f"Authors: {', '.join(a.name for a in r.authors)}\n" | |
f"Published: {r.published.strftime('%Y-%m-%d')}\n" | |
f"Summary: {r.summary[:250]}...\n" | |
f"URL: {r.entry_id}" | |
) | |
return "\n\n".join(output) | |
except Exception as e: | |
return f"arXiv error: {str(e)}" | |
# ===== QA Tools ===== | |
class HuggingFaceDocumentQATool: | |
def __init__(self): | |
self.description = "Answer questions from documents. Input: 'document_text||question'" | |
self.model = pipeline( | |
'question-answering', | |
model='deepset/roberta-base-squad2', | |
tokenizer='deepset/roberta-base-squad2' | |
) | |
def run(self, input_str: str) -> str: | |
try: | |
if '||' not in input_str: | |
return "Invalid format. Use: 'document_text||question'" | |
context, question = input_str.split('||', 1) | |
result = self.model(question=question, context=context) | |
return result['answer'] | |
except Exception as e: | |
return f"QA error: {str(e)}" | |
# ===== Code Execution ===== | |
class PythonCodeExecutionTool: | |
def __init__(self): | |
self.description = "Execute Python code. Input: valid Python code" | |
def run(self, code: str) -> str: | |
try: | |
# Isolate code in a clean environment | |
env = {} | |
exec(f"def __temp_func__():\n {indent_code(code)}", env) | |
output = env['__temp_func__']() | |
return str(output) | |
except Exception as e: | |
return f"Execution error: {str(e)}" | |
def indent_code(code: str) -> str: | |
"""Add proper indentation for multiline code""" | |
return '\n '.join(code.splitlines()) | |
# ===== Answer Formatting ===== | |
class FinalAnswerTool: | |
def __init__(self): | |
self.description = "Format final answer. Input: answer content" | |
def run(self, answer: str) -> str: | |
return f"FINAL ANSWER: {answer}" | |
class BasicAgent: | |
def __init__(self): | |
token = os.environ.get("HF_API_TOKEN") | |
model = HfApiModel( | |
temperature=0.0, # Reduced for deterministic output | |
token=token | |
) | |
# Curated toolset - remove redundant/conflicting tools | |
search_tool = DuckDuckGoSearchTool() | |
wiki_search_tool = WikiSearchTool() | |
arxiv_search_tool = ArxivSearchTool() | |
doc_qa_tool = HuggingFaceDocumentQATool() | |
python_tool = PythonCodeExecutionTool() | |
final_answer_tool = FinalAnswerTool() | |
# Strategic tool selection | |
tools = [ | |
search_tool, | |
wiki_search_tool, | |
arxiv_search_tool, | |
doc_qa_tool, | |
python_tool, | |
final_answer_tool | |
] | |
# Enhanced system prompt | |
system_prompt = """ | |
You are a precision question-answering AI. Follow this protocol: | |
1. Analyze the question type: factual, computational, or multi-step | |
2. Select the optimal tool: | |
- Use Search/Wiki/Arxiv for factual queries | |
- Use Python tool for calculations | |
- Use DocQA for document-based questions | |
3. Execute necessary actions | |
4. Verify answer matches question requirements | |
5. Output FINAL ANSWER using this format: | |
"FINAL ANSWER: [EXACT_RESULT]" | |
Answer rules: | |
- Numbers: Plain format (e.g., 1000000) | |
- Strings: No articles/abbreviations (e.g., "Paris" not "city of Paris") | |
- Lists: Comma-separated (e.g., "red,blue,green") | |
- Never include units ($, kg, etc.) unless explicitly required | |
- For true/false: Use "true" or "false" lowercase | |
""" | |
self.agent = CodeAgent( | |
model=model, | |
tools=tools, | |
add_base_tools=False # Prevent tool conflicts | |
) | |
# Force strict prompt template | |
self.agent.prompt_templates["system_prompt"] = system_prompt | |
def __call__(self, question: str) -> str: | |
print(f"Processing: {question[:50]}...") | |
try: | |
result = self.agent.run(question) | |
# Extract final answer using regex | |
import re | |
match = re.search(r"FINAL ANSWER:\s*(.+)", result, re.IGNORECASE) | |
return match.group(1).strip() if match else result | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
return "Unable to determine answer" | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |