wt002's picture
Update agent.py
29344f7 verified
raw
history blame
39.6 kB
# agent.py
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from sentence_transformers import SentenceTransformer
from langchain.embeddings.base import Embeddings
from typing import List
import numpy as np
import yaml
import pandas as pd
import uuid
import requests
import json
from langchain_core.documents import Document
from langchain_community.vectorstores import FAISS
#from langchain.embeddings import BERTEmbeddings
#from langchain_community.embeddings import HuggingFaceEmbeddings
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable
import re
from langchain_community.document_loaders import TextLoader, PyMuPDFLoader
from docx import Document as DocxDocument
import openpyxl
from io import StringIO
from transformers import BertTokenizer, BertModel
import torch
import torch.nn.functional as F
from langchain_community.chat_models import ChatOpenAI
from langchain_community.tools import Tool
import time
from huggingface_hub import InferenceClient
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig
from langchain_huggingface import HuggingFaceEndpoint
#from langchain.agents import initialize_agent
#from langchain.agents import AgentType
from typing import Union, List
from functools import reduce
import operator
from typing import Union
from functools import reduce
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
load_dotenv()
@tool
def calculator(inputs: Union[str, dict]):
"""
Perform mathematical operations based on the operation provided.
Supports both binary (a, b) operations and list operations.
"""
# If input is a JSON string, parse it
if isinstance(inputs, str):
try:
import json
inputs = json.loads(inputs)
except Exception as e:
return f"Invalid input format: {e}"
# Handle list-based operations like SUM
if "list" in inputs:
nums = inputs.get("list", [])
op = inputs.get("operation", "").lower()
if not isinstance(nums, list) or not all(isinstance(n, (int, float)) for n in nums):
return "Invalid list input. Must be a list of numbers."
if op == "sum":
return sum(nums)
elif op == "multiply":
return reduce(operator.mul, nums, 1)
else:
return f"Unsupported list operation: {op}"
# Handle basic two-number operations
a = inputs.get("a")
b = inputs.get("b")
operation = inputs.get("operation", "").lower()
if a is None or b is None or not isinstance(a, (int, float)) or not isinstance(b, (int, float)):
return "Both 'a' and 'b' must be numbers."
if operation == "add":
return a + b
elif operation == "subtract":
return a - b
elif operation == "multiply":
return a * b
elif operation == "divide":
if b == 0:
return "Error: Division by zero"
return a / b
elif operation == "modulus":
return a % b
else:
return f"Unknown operation: {operation}"
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return up to 2 results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return formatted_search_docs
@tool
def wikidata_query(query: str) -> str:
"""
Run a SPARQL query on Wikidata and return results.
"""
endpoint_url = "https://query.wikidata.org/sparql"
headers = {
"Accept": "application/sparql-results+json"
}
response = requests.get(endpoint_url, headers=headers, params={"query": query})
data = response.json()
return json.dumps(data, indent=2)
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return up to 3 results."""
tavily_key = os.getenv("TAVILY_API_KEY")
if not tavily_key:
return "Error: Tavily API key not set."
search_tool = TavilySearchResults(tavily_api_key=tavily_key, max_results=3)
search_docs = search_tool.invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
@tool
def analyze_attachment(file_path: str) -> str:
"""
Analyzes attachments including PY, PDF, TXT, DOCX, and XLSX files and returns text content.
Args:
file_path: Local path to the attachment.
"""
if not os.path.exists(file_path):
return f"File not found: {file_path}"
try:
ext = file_path.lower()
if ext.endswith(".pdf"):
loader = PyMuPDFLoader(file_path)
documents = loader.load()
content = "\n\n".join([doc.page_content for doc in documents])
elif ext.endswith(".txt") or ext.endswith(".py"):
# Both .txt and .py are plain text files
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
elif ext.endswith(".docx"):
doc = DocxDocument(file_path)
content = "\n".join([para.text for para in doc.paragraphs])
elif ext.endswith(".xlsx"):
wb = openpyxl.load_workbook(file_path, data_only=True)
content = ""
for sheet in wb:
content += f"Sheet: {sheet.title}\n"
for row in sheet.iter_rows(values_only=True):
content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n"
else:
return "Unsupported file format. Please use PY, PDF, TXT, DOCX, or XLSX."
return content[:3000] # Limit output size for readability
except Exception as e:
return f"An error occurred while processing the file: {str(e)}"
@tool
def get_youtube_transcript(url: str) -> str:
"""
Fetch transcript text from a YouTube video.
Args:
url (str): Full YouTube video URL.
Returns:
str: Transcript text as a single string.
Raises:
ValueError: If no transcript is available or URL is invalid.
"""
try:
# Extract video ID
video_id = extract_video_id(url)
transcript = YouTubeTranscriptApi.get_transcript(video_id)
# Combine all transcript text
full_text = " ".join([entry['text'] for entry in transcript])
return full_text
except (TranscriptsDisabled, VideoUnavailable) as e:
raise ValueError(f"Transcript not available: {e}")
except Exception as e:
raise ValueError(f"Failed to fetch transcript: {e}")
@tool
def extract_video_id(url: str) -> str:
"""
Extract the video ID from a YouTube URL.
"""
match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url)
if not match:
raise ValueError("Invalid YouTube URL")
return match.group(1)
# -----------------------------
# Load configuration from YAML
# -----------------------------
with open("config.yaml", "r") as f:
config = yaml.safe_load(f)
provider = config["provider"]
model_config = config["models"][provider]
#prompt_path = config["system_prompt_path"]
enabled_tool_names = config["tools"]
# -----------------------------
# Load system prompt
# -----------------------------
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# -----------------------------
# Map tool names to functions
# -----------------------------
tool_map = {
"math": calculator,
"wiki_search": wiki_search,
"web_search": web_search,
"arxiv_search": arxiv_search,
"get_youtube_transcript": get_youtube_transcript,
"extract_video_id": extract_video_id,
"analyze_attachment": analyze_attachment,
"wikidata_query": wikidata_query
}
# Then define which tools you want enabled
enabled_tool_names = [
"math",
"wiki_search",
"web_search",
"arxiv_search",
"get_youtube_transcript",
"extract_video_id",
"analyze_attachment",
"wikidata_query"
]
tools = [tool_map[name] for name in enabled_tool_names]
# Safe version
tools = []
for name in enabled_tool_names:
if name not in tool_map:
print(f"❌ Tool not found: {name}")
continue
tools.append(tool_map[name])
# -----------------------------
# Prepare Documents
# -----------------------------
# Define the URL where the JSON file is hosted
from typing import TypedDict, Annotated, List
import gradio as gr
from langchain.schema import Document
import json
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
import faiss
# 1. Type-Checked State for Gradio
class ChatState(TypedDict):
messages: Annotated[
List[str],
gr.State(render=False),
"Stores chat history as list of strings"
]
# 2. Content Processing Utilities
def process_content(raw_content) -> str:
"""Convert any input to a clean string"""
if isinstance(raw_content, list):
return " ".join(str(item) for item in raw_content)
return str(raw_content)
def reverse_text(text: str) -> str:
"""Fix reversed text patterns"""
return text[::-1].replace("\\", "").strip() if text.startswith(('.', ',')) else text
# 3. Unified Document Creation
def create_documents(data_source: str, data: List[dict]) -> List[Document]:
"""Handle both Gradio chat and JSON questions"""
docs = []
for item in data:
# Process different data sources
if data_source == "gradio":
content = "\n".join(item["messages"])
elif data_source == "json":
raw_question = item.get("question", "")
content = reverse_text(process_content(raw_question))
else:
continue
# Ensure metadata type safety
metadata = {
"task_id": str(item.get("task_id", "")),
"level": str(item.get("Level", "")),
"file_name": str(item.get("file_name", ""))
}
docs.append(Document(page_content=content, metadata=metadata))
return docs
# 4. Vector Store Integration
class MyVector_Store:
def __init__(self, index: faiss.Index):
self.index = index
def save_local(self, path: str):
faiss.write_index(self.index, path)
@classmethod
def load_local(cls, path: str):
index = faiss.read_index(path)
return cls(index)
# Process JSON data
with open("questions.json", "r", encoding="utf-8") as f:
json_data = json.load(f)
# Create documents from JSON
docs = create_documents("json", json_data)
texts = [doc.page_content for doc in docs]
# Initialize embedding model
embedding_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
# Create FAISS index
vector_store = FAISS.from_documents(
documents=docs,
embedding=embedding_model
)
# Save
vector_store.save_local("/home/wendy/Downloads/faiss_index.index")
# Load
loaded_store = Vector_Store.load_local("/home/wendy/Downloads/faiss_index.index")
# -----------------------------
# Create LangChain Retriever Tool
# -----------------------------
retriever = FAISS. loaded_store("/home/wendy/Downloads/faiss_index.index", embedding_model).as_retriever()
question_retriever_tool = create_retriever_tool(
retriever=retriever,
name="Question_Search",
description="A tool to retrieve documents related to a user's question."
)
# Define the LLM before using it
#llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # or "gpt-3.5-turbo" "gpt-4"
#llm = ChatMistralAI(model="mistral-7b-instruct-v0.1")
# Get the Hugging Face API token from the environment variable
#hf_token = os.getenv("HF_TOKEN")
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
huggingfacehub_api_token=os.getenv("HF_TOKEN"),
temperature=0.7,
max_new_tokens=512
)
# -------------------------------
# Step 8: Use the Planner, Classifier, and Decision Logic
# -------------------------------
def process_question(question):
# Step 1: Planner generates the task sequence
tasks = planner(question)
print(f"Tasks to perform: {tasks}")
# Step 2: Classify the task (based on question)
task_type = task_classifier(question)
print(f"Task type: {task_type}")
# Step 3: Use the classifier and planner to decide on the next task or node
state = {"question": question, "last_response": ""}
next_task = decide_task(state)
print(f"Next task: {next_task}")
# Step 4: Use node skipper logic (skip if needed)
skip = node_skipper(state)
if skip:
print(f"Skipping to {skip}")
return skip # Or move directly to generating answer
# Step 5: Execute task (with error handling)
try:
if task_type == "wiki_search":
response = wiki_search(question)
elif task_type == "math":
response = calculator(question)
else:
response = "Default answer logic"
# Step 6: Final response formatting
final_response = final_answer_tool(state, {'wiki_search': response})
return final_response
except Exception as e:
print(f"Error executing task: {e}")
return "Sorry, I encountered an error processing your request."
# Run the process
#question = "How many albums did Mercedes Sosa release between 2000 and 2009?"
#response = agent.invoke(question)
#print("Final Response:", response)
from langchain.schema import HumanMessage
def retriever(state: MessagesState, k: int = 4):
"""
Retrieves documents from the vector store using similarity scores,
applies a dynamic threshold filter, and returns updated message state.
Args:
state (MessagesState): Current message state including the user's query.
k (int): Number of top results to retrieve from the vector store.
Returns:
dict: Updated messages state including relevant documents or fallback message.
"""
query = state["messages"][0].content.strip()
results = vector_store.similarity_search_with_score(query, k=k)
# Determine dynamic similarity threshold
if any(keyword in query.lower() for keyword in ["who", "what", "where", "when", "why", "how"]):
threshold = 0.75
else:
threshold = 0.8
filtered = [doc for doc, score in results if score < threshold]
if not filtered:
response_msg = HumanMessage(content="No relevant documents found.")
else:
content = "\n\n".join(doc.page_content for doc in filtered)
response_msg = HumanMessage(content=f"Here are relevant reference documents:\n\n{content}")
return {"messages": [sys_msg] + state["messages"] + [response_msg]}
# ----------------------------------------------------------------
# LLM Loader
# ----------------------------------------------------------------
def get_llm(provider: str, config: dict):
if provider == "google":
from langchain_google_genai import ChatGoogleGenerativeAI
return ChatGoogleGenerativeAI(
model=config.get("model"),
temperature=config.get("temperature", 0.7),
google_api_key=config.get("api_key") # Optional: if needed
)
elif provider == "groq":
from langchain_groq import ChatGroq
return ChatGroq(
model=config.get("model"),
temperature=config.get("temperature", 0.7),
groq_api_key=config.get("api_key") # Optional: if needed
)
elif provider == "huggingface":
from langchain_huggingface import ChatHuggingFace
from langchain_huggingface import HuggingFaceEndpoint
return ChatHuggingFace(
llm=HuggingFaceEndpoint(
endpoint_url=config.get("url"),
temperature=config.get("temperature", 0.7),
huggingfacehub_api_token=config.get("api_key") # Optional
)
)
else:
raise ValueError(f"Invalid provider: {provider}")
# ----------------------------------------------------------------
# Planning & Execution Logic
# ----------------------------------------------------------------
def planner(question: str, tools: list) -> tuple:
"""
Select the best-matching tool(s) for a question based on keyword-based intent detection and tool metadata.
Returns the detected intent and matched tools.
"""
question = question.lower().strip()
# Define intent-based keywords
intent_keywords = {
"math": ["calculate", "evaluate", "add", "subtract", "multiply", "divide", "modulus", "plus", "minus", "times"],
"wiki_search": ["who is", "what is", "define", "explain", "tell me about", "overview of"],
"web_search": ["search", "find", "look up", "google", "latest news", "current info"],
"arxiv_search": ["arxiv", "research paper", "scientific paper", "preprint"],
"get_youtube_transcript": ["youtube", "watch", "play video", "show me a video"],
"extract_video_id": ["analyze video", "summarize video", "video content"],
"data_analysis": ["analyze", "plot", "graph", "data", "visualize"],
"wikidata_query": ["wikidata", "sparql", "run sparql", "query wikidata"],
"default": ["why", "how", "difference between", "compare", "what happens", "reason for", "cause of", "effect of"]
}
# Step 1: Identify intent
detected_intent = None
for intent, keywords in intent_keywords.items():
if any(keyword in question for keyword in keywords):
detected_intent = intent
break
# Step 2: Match tools by intent
matched_tools = []
if detected_intent:
for tool in tools:
name = getattr(tool, "name", "").lower()
description = getattr(tool, "description", "").lower()
if detected_intent in name or detected_intent in description:
matched_tools.append(tool)
# Step 3: Fallback to general-purpose/default tools if no match found
if not matched_tools:
matched_tools = [
tool for tool in tools
if "default" in getattr(tool, "name", "").lower()
or "qa" in getattr(tool, "description", "").lower()
]
return detected_intent, matched_tools if matched_tools else [tools[0]]
def task_classifier(question: str) -> str:
"""
Classifies the question into one of the predefined task categories.
"""
question = question.lower().strip()
# Context-aware intent patterns
if any(phrase in question for phrase in [
"calculate", "how much is", "what is the result of", "evaluate", "solve"
]) or any(op in question for op in ["add", "subtract", "multiply", "divide", "modulus", "plus", "minus", "times"]):
return "math"
elif any(phrase in question for phrase in [
"who is", "what is", "define", "explain", "tell me about", "give me an overview of"
]):
return "wiki_search"
elif any(phrase in question for phrase in [
"search", "find", "look up", "google", "get the latest", "current news", "trending"
]):
return "web_search"
elif any(phrase in question for phrase in [
"arxiv", "latest research", "scientific paper", "research paper", "preprint"
]):
return "arxiv_search"
elif any(phrase in question for phrase in [
"youtube", "watch", "play the video", "show me a video"
]):
return "get_youtube_transcript"
elif any(phrase in question for phrase in [
"analyze video", "summarize video", "what happens in the video", "video content"
]):
return "video_analysis"
elif any(phrase in question for phrase in [
"analyze", "visualize", "plot", "graph", "inspect data", "explore dataset"
]):
return "data_analysis"
elif any(phrase in question for phrase in [
"sparql", "wikidata", "query wikidata", "run sparql", "wikidata query"
]):
return "wikidata_query"
return "default"
def select_tool_and_run(question: str, tools: dict):
# Step 1: Classify intent
intent = task_classifier(question) # assuming task_classifier maps the question to intent
# Map intent to tool names
intent_tool_map = {
"math": "calculator", # maps to tools["math"] → calculator
"wiki_search": "wiki_search", # → wiki_search
"web_search": "web_search", # → web_search
"arxiv_search": "arxiv_search", # → arxiv_search (spelling fixed)
"get_youtube_transcript": "get_youtube_transcript", # → get_youtube_transcript
"extract_video_id": "extract_video_id", # adjust based on your tools
"analyze_attachment": "analyze_attachment", # assuming analyze_attachment handles this
"wikidata_query": "wikidata_query", # → wikidata_query
"default": "default" # → default_tool
}
# Get the corresponding tool name
tool_name = intent_tool_map.get(intent, "default") # Default to "default" if no match
# Retrieve the tool from the tools dictionary
tool_func = tools.get(tool_name)
if not tool_func:
return f"Tool not found for intent '{intent}'"
# Step 2: Run the tool
try:
# If the tool needs JSON or structured data
try:
parsed_input = json.loads(question)
except json.JSONDecodeError:
parsed_input = question # fallback to raw input if not JSON
# Run the selected tool
print(f"Running tool: {tool_name} with input: {parsed_input}") # log the tool name and input
return tool_func(parsed_input)
except Exception as e:
return f"Error while running tool '{tool_name}': {str(e)}"
# Function to extract math operation from the question
def extract_math_from_question(question: str):
question = question.lower()
# Map natural language to symbols
ops = {
"add": "+", "plus": "+",
"subtract": "-", "minus": "-",
"multiply": "*", "times": "*",
"divide": "/", "divided by": "/",
"modulus": "%", "mod": "%"
}
for word, symbol in ops.items():
question = re.sub(rf"\b{word}\b", symbol, question)
# Extract math expression like "12 + 5"
match = re.search(r'(\d+)\s*([\+\-\*/%])\s*(\d+)', question)
if match:
num1 = int(match.group(1))
operator = match.group(2)
num2 = int(match.group(3))
return {
"a": num1,
"b": num2,
"operation": {
"+": "add",
"-": "subtract",
"*": "multiply",
"/": "divide",
"%": "modulus"
}[operator]
}
return None
# Example tool set (adjust these to match your actual tool names)
intent_tool_map = {
"math": "math", # maps to tools["math"] → calculator
"wiki_search": "wiki_search", # → wiki_search
"web_search": "web_search", # → web_search
"arxiv_search": "arxiv_search", # → arxiv_search (spelling fixed)
"get_youtube_transcript": "get_youtube_transcript", # → get_youtube_transcript
"extract_video_id": "extract_video_id", # adjust based on your tools
"analyze_attachment": "analyze_attachment", # assuming analyze_attachment handles this
"wikidata_query": "wikidata_query", # → wikidata_query
"default": "default" # → default_tool
}
# The task order can also include the tools for each task
priority_order = [
{"task": "math", "tool": "math"},
{"task": "wiki_search", "tool": "wiki_search"},
{"task": "web_search", "tool": "web_search"},
{"task": "arxiv_search", "tool": "arxiv_search"},
{"task": "wikidata_query", "tool": "wikidata_query"},
{"task": "retriever", "tool": "retriever"},
{"task": "get_youtube_transcript", "tool": "get_youtube_transcript"},
{"task": "extract_video_id", "tool": "extract_video_id"},
{"task": "analyze_attachment", "tool": "analyze_attachment"},
{"task": "default", "tool": "default"} # Fallback
]
def decide_task(state: dict) -> str:
"""Decides which task to perform based on the current state."""
# Get the list of tasks from the planner
tasks = planner(state["question"])
print(f"Available tasks: {tasks}") # Debugging: show all possible tasks
# Check if the tasks list is empty or invalid
if not tasks:
print("❌ No valid tasks were returned from the planner.")
return "default" # Return a default task if no tasks were generated
# If there are multiple tasks, we can prioritize based on certain conditions
task = tasks[0] # Default to the first task in the list
if len(tasks) > 1:
print(f"⚠️ Multiple tasks found. Deciding based on priority.")
# Example logic to prioritize tasks, adjust based on your use case
task = prioritize_tasks(tasks)
print(f"Decided on task: {task}") # Debugging: show the final task
return task
def prioritize_tasks(tasks: list) -> str:
"""Prioritize tasks based on certain conditions or criteria, including tools."""
# Sort tasks based on priority_order mapping
for priority in priority_order:
# Check if any task matches the priority task type
for task in tasks:
if priority["task"] in task:
print(f"✅ Prioritizing task: {task} with tool: {priority['tool']}") # Debugging: show the chosen task and tool
# Assign the correct tool based on the task
tool = tools.get(priority["tool"], tools["default"]) # Default to 'default_tool' if not found
return task, tool
# If no priority task is found, return the first task with its default tool
return tasks[0], tools["default"]
def process_question(question: str):
"""Process the question and route it to the appropriate tool."""
# Get the tasks from the planner
tasks = planner(question)
print(f"Tasks to perform: {tasks}")
task_type, tool = decide_task({"question": question})
print(f"Next task: {task_type} with tool: {tool}")
if node_skipper({"question": question}):
print(f"Skipping task: {task_type}")
return "Task skipped."
try:
# Execute the corresponding tool for the task type
if task_type == "wiki_search":
response = tool.run(question) # Assuming tool is wiki_tool
elif task_type == "math":
response = tool.run(question) # Assuming tool is calc_tool
elif task_type == "retriever":
response = tool.run(question) # Assuming tool is retriever_tool
else:
response = tool.run(question) # Default tool
return generate_final_answer({"question": question}, {task_type: response})
except Exception as e:
print(f"❌ Error: {e}")
return f"Sorry, I encountered an error: {str(e)}"
def call_llm(state):
messages = state["messages"]
response = llm.invoke(messages)
return {"messages": messages + [response]}
from langchain.schema import AIMessage
from typing import TypedDict, List, Optional
from langchain_core.messages import BaseMessage
class AgentState(TypedDict):
messages: List[BaseMessage] # Chat history
input: str # Original input
intent: str # Derived or predicted intent
result: Optional[str] # Optional result
def tool_dispatcher(state: AgentState) -> AgentState:
last_msg = state["messages"][-1]
# Make sure it's an AI message with tool_calls
if isinstance(last_msg, AIMessage) and last_msg.tool_calls:
tool_call = last_msg.tool_calls[0]
tool_name = tool_call["name"]
tool_input = tool_call["args"] # Adjust based on your actual schema
tool_func = tool_map.get(tool_name, default_tool)
# If args is a dict and your tool expects unpacked values:
if isinstance(tool_input, dict):
result = tool_func.invoke(tool_input) if hasattr(tool_func, "invoke") else tool_func(**tool_input)
else:
result = tool_func.invoke(tool_input) if hasattr(tool_func, "invoke") else tool_func(tool_input)
# You can choose to append this to messages, or just save result
return {
**state,
"result": result,
# Optionally add: "messages": state["messages"] + [ToolMessage(...)]
}
# No tool call detected, return state unchanged
return state
# Decide what to do next: if tool call → call_tool, else → end
def should_call_tool(state):
last_msg = state["messages"][-1]
if isinstance(last_msg, AIMessage) and last_msg.tool_calls:
return "call_tool"
return "end"
from typing import TypedDict, List, Optional, Union
from langchain.schema import BaseMessage
class AgentState(TypedDict):
messages: List[BaseMessage] # Chat history
input: str # Original input
intent: str # Derived or predicted intent
result: Optional[str] # Final or intermediate result
# To store previously asked questions and timestamps (simulating state persistence)
recent_questions = {}
def node_skipper(state: dict) -> bool:
"""
Determines whether to skip the task based on the state.
This could include:
1. Repeated or similar questions
2. Irrelevant or empty questions
3. Tasks that have already been processed recently
"""
question = state.get("question", "").strip()
if not question:
print("❌ Skipping: Empty or invalid question.")
return True # Skip if no valid question
# 1. Skip if the question has already been asked recently (within a given time window)
# Here, we're using a simple example with a 5-minute window (300 seconds).
if question in recent_questions:
last_asked_time = recent_questions[question]
time_since_last_ask = time.time() - last_asked_time
if time_since_last_ask < 300: # 5-minute threshold
print(f"❌ Skipping: The question has been asked recently. Time since last ask: {time_since_last_ask:.2f} seconds.")
return True # Skip if the question was asked within the last 5 minutes
# 2. Skip if the question is irrelevant or not meaningful enough
irrelevant_keywords = ["blah", "nothing", "invalid", "nonsense"]
if any(keyword in question.lower() for keyword in irrelevant_keywords):
print("❌ Skipping: Irrelevant or nonsense question.")
return True # Skip if the question contains irrelevant keywords
# 3. Skip if the task has already been completed for this question (based on a unique task identifier)
if "last_response" in state and state["last_response"]:
print("❌ Skipping: Task has already been processed recently.")
return True # Skip if a response has already been given
# 4. Skip based on a condition related to the task itself
# Example: Skip math-related tasks if the result is already known or trivial
if "math" in state.get("question", "").lower():
# If math is trivial (like "What is 2+2?")
trivial_math = ["2 + 2", "1 + 1", "3 + 3"]
if any(trivial_question in question for trivial_question in trivial_math):
print(f"❌ Skipping trivial math question: {question}")
return True # Skip if the math question is trivial
# 5. Skip based on external factors (e.g., current time, system load, etc.)
# Example: Avoid processing tasks at night if that's part of the business logic
current_hour = time.localtime().tm_hour
if current_hour >= 22 or current_hour < 6:
print("❌ Skipping: It's night time, not processing tasks.")
return True # Skip tasks during night time (e.g., between 10 PM and 6 AM)
# If none of the conditions matched, don't skip the task
return False
# Update recent questions (for simulating repeated question check)
def update_recent_questions(question: str):
"""Update the recent questions dictionary with the current timestamp."""
recent_questions[question] = time.time()
def generate_final_answer(state: dict, task_results: dict) -> str:
"""Generate a final answer based on the results of the task."""
if "wiki_search" in task_results:
return f"📚 Wiki Summary:\n{task_results['wiki_search']}"
elif "math" in task_results:
return f"🧮 Math Result: {task_results['math']}"
elif "retriever" in task_results:
return f"🔍 Retrieved Info: {task_results['retriever']}"
else:
return "🤖 Unable to generate a specific answer."
def answer_question(question: str) -> str:
"""Process a single question and return the answer."""
print(f"Processing question: {question[:50]}...") # Debugging: show first 50 chars
# Wrap the question in a HumanMessage from langchain_core (assuming langchain is used)
messages = [HumanMessage(content=question)]
response = graph.invoke({"messages": messages}) # Assuming `graph` is defined elsewhere
# Extract the answer from the response
answer = response['messages'][-1].content
return answer[14:] # Assuming 'answer[14:]' is correct based on your example
def process_all_tasks(tasks: list):
"""Process a list of tasks."""
results = {}
for task in tasks:
question = task.get("question", "").strip()
if not question:
print(f"Skipping task with missing or empty 'question': {task}")
continue
print(f"\n🟢 Processing Task: {task['task_id']} - Question: {question}")
# Call the existing process_question logic
response = process_question(question)
print(f"✅ Response: {response}")
results[task['task_id']] = response
return results
## Langgraph
# Build graph function
vector_store = vector_store.save_local("faiss_index")
provider = "huggingface"
model_config = {
"repo_id": "HuggingFaceH4/zephyr-7b-beta",
"task": "text-generation",
"temperature": 0.7,
"max_new_tokens": 512,
"huggingfacehub_api_token": os.getenv("HF_TOKEN")
}
# Get LLM
def get_llm(provider: str, config: dict):
if provider == "huggingface":
from langchain_huggingface import HuggingFaceEndpoint
return HuggingFaceEndpoint(
repo_id=config["repo_id"],
task=config["task"],
huggingfacehub_api_token=config["huggingfacehub_api_token"],
temperature=config["temperature"],
max_new_tokens=config["max_new_tokens"]
)
else:
raise ValueError(f"Unsupported provider: {provider}")
def assistant(state: dict):
return {
"messages": [llm_with_tools.invoke(state["messages"])]
}
def tools_condition(state: dict) -> str:
if "use tool" in state["messages"][-1].content.lower():
return "tools"
else:
return "END"
from langgraph.graph import StateGraph
from langchain_core.messages import SystemMessage
from langchain_core.runnables import RunnableLambda
def build_graph(vector_store, provider: str, model_config: dict) -> StateGraph:
# Get LLM
llm = get_llm(provider, model_config)
# Define available tools
tools = [
wiki_search, calculator, web_search, arxiv_search,
get_youtube_transcript, extract_video_id, analyze_attachment, wikidata_query
]
# Tool mapping (global if needed elsewhere)
global tool_map
tool_map = {t.name: t for t in tools}
# Bind tools only if LLM supports it
if hasattr(llm, "bind_tools"):
llm_with_tools = llm.bind_tools(tools)
else:
llm_with_tools = llm # fallback for non-tool-aware models
sys_msg = SystemMessage(content="You are a helpful assistant.")
# Define nodes as runnables
retriever = RunnableLambda(lambda state: {
**state,
"retrieved_docs": vector_store.similarity_search(state["input"])
})
assistant = RunnableLambda(lambda state: {
**state,
"messages": [sys_msg] + state["messages"]
})
call_llm = llm_with_tools # already configured
# Start building the graph
builder = StateGraph(AgentState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("call_llm", call_llm)
builder.add_node("call_tool", tool_dispatcher)
builder.add_node("end", lambda state: state) # Add explicit end node
# Define graph flow
builder.set_entry_point("retriever")
builder.add_edge("retriever", "assistant")
builder.add_edge("assistant", "call_llm")
builder.add_conditional_edges("call_llm", should_call_tool, {
"call_tool": "call_tool",
"end": "end" # ✅ fixed: must point to actual "end" node
})
builder.add_edge("call_tool", "call_llm") # loop back after tool call
return builder.compile()