Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool | |
from dotenv import load_dotenv | |
import heapq | |
from collections import Counter | |
import re | |
from io import BytesIO | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.utilities import WikipediaAPIWrapper | |
from langchain_community.document_loaders import ArxivLoader | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
#Load environment variables | |
load_dotenv() | |
import io | |
import contextlib | |
import traceback | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from smolagents import Tool, CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel | |
class CodeLlamaTool(Tool): | |
name = "code_llama_tool" | |
description = "Solves reasoning/code questions using Meta Code Llama 7B Instruct" | |
inputs = { | |
"question": { | |
"type": "string", | |
"description": "The question requiring code-based or reasoning-based solution" | |
} | |
} | |
output_type = "string" | |
def __init__(self): | |
self.model_id = "codellama/CodeLlama-7b-Instruct-hf" | |
token = os.getenv("HF_TOKEN") | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.model_id, | |
device_map="auto", | |
torch_dtype="auto", | |
token=token | |
) | |
self.pipeline = pipeline( | |
"text-generation", | |
model=self.model, | |
tokenizer=self.tokenizer, | |
max_new_tokens=512, | |
temperature=0.2, | |
truncation=True | |
) | |
def forward(self, question: str) -> str: | |
prompt = f"""You are an AI that uses Python code to answer questions. | |
Question: {question} | |
Instructions: | |
- If solving requires code, use a block like <tool>code</tool>. | |
- Always end with <final>FINAL ANSWER</final> containing the final number or string. | |
Example: | |
Question: What is 5 * sqrt(36)? | |
Answer: | |
<tool> | |
import math | |
print(5 * math.sqrt(36)) | |
</tool> | |
<final>30.0</final> | |
Answer:""" | |
response = self.pipeline(prompt)[0]["generated_text"] | |
return self.parse_and_execute(response) | |
def parse_and_execute(self, response: str) -> str: | |
try: | |
# Extract and run code if exists | |
if "<tool>" in response and "</tool>" in response: | |
code = response.split("<tool>")[1].split("</tool>")[0].strip() | |
result = self._run_code(code) | |
return f"FINAL ANSWER (code output): {result}" | |
# Extract final result directly | |
elif "<final>" in response and "</final>" in response: | |
final = response.split("<final>")[1].split("</final>")[0].strip() | |
return f"FINAL ANSWER: {final}" | |
return f"Could not extract final answer.\n\n{response}" | |
except Exception as e: | |
return f"Error in parse_and_execute: {str(e)}\n\nFull response:\n{response}" | |
def _run_code(self, code: str) -> str: | |
buffer = io.StringIO() | |
try: | |
with contextlib.redirect_stdout(buffer): | |
exec(code, {}) | |
return buffer.getvalue().strip() | |
except Exception: | |
return f"Error executing code:\n{traceback.format_exc()}" | |
from duckduckgo_search import DDGS | |
import wikipedia | |
import arxiv | |
from transformers import pipeline | |
import os | |
import re | |
import ast | |
import subprocess | |
import sys | |
# ===== Search Tools ===== | |
class DuckDuckGoSearchTool: | |
def __init__(self, max_results=3): | |
self.description = "Search web using DuckDuckGo. Input: search query" | |
self.max_results = max_results | |
def run(self, query: str) -> str: | |
try: | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=self.max_results)] | |
return "\n\n".join( | |
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}" | |
for res in results | |
) | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
class WikiSearchTool: | |
def __init__(self, sentences=3): | |
self.description = "Get Wikipedia summaries. Input: search phrase" | |
self.sentences = sentences | |
def run(self, query: str) -> str: | |
try: | |
return wikipedia.summary(query, sentences=self.sentences) | |
except wikipedia.DisambiguationError as e: | |
return f"Disambiguation error. Options: {', '.join(e.options[:5])}" | |
except wikipedia.PageError: | |
return "Page not found" | |
except Exception as e: | |
return f"Wikipedia error: {str(e)}" | |
class ArxivSearchTool: | |
def __init__(self, max_results=3): | |
self.description = "Search academic papers on arXiv. Input: search query" | |
self.max_results = max_results | |
def run(self, query: str) -> str: | |
try: | |
results = arxiv.Search( | |
query=query, | |
max_results=self.max_results, | |
sort_by=arxiv.SortCriterion.Relevance | |
).results() | |
output = [] | |
for r in results: | |
output.append( | |
f"Title: {r.title}\n" | |
f"Authors: {', '.join(a.name for a in r.authors)}\n" | |
f"Published: {r.published.strftime('%Y-%m-%d')}\n" | |
f"Summary: {r.summary[:250]}...\n" | |
f"URL: {r.entry_id}" | |
) | |
return "\n\n".join(output) | |
except Exception as e: | |
return f"arXiv error: {str(e)}" | |
# ===== QA Tools ===== | |
class HuggingFaceDocumentQATool: | |
def __init__(self): | |
self.description = "Answer questions from documents. Input: 'document_text||question'" | |
self.model = pipeline( | |
'question-answering', | |
model='deepset/roberta-base-squad2', | |
tokenizer='deepset/roberta-base-squad2' | |
) | |
def run(self, input_str: str) -> str: | |
try: | |
if '||' not in input_str: | |
return "Invalid format. Use: 'document_text||question'" | |
context, question = input_str.split('||', 1) | |
result = self.model(question=question, context=context) | |
return result['answer'] | |
except Exception as e: | |
return f"QA error: {str(e)}" | |
# ===== Code Execution ===== | |
class PythonCodeExecutionTool: | |
def __init__(self): | |
self.description = "Execute Python code. Input: valid Python code" | |
def run(self, code: str) -> str: | |
try: | |
# Isolate code in a clean environment | |
env = {} | |
exec(f"def __temp_func__():\n {indent_code(code)}", env) | |
output = env['__temp_func__']() | |
return str(output) | |
except Exception as e: | |
return f"Execution error: {str(e)}" | |
def indent_code(code: str) -> str: | |
"""Add proper indentation for multiline code""" | |
return '\n '.join(code.splitlines()) | |
# ===== Answer Formatting ===== | |
class FinalAnswerTool: | |
def __init__(self): | |
self.description = "Format final answer. Input: answer content" | |
def run(self, answer: str) -> str: | |
return f"FINAL ANSWER: {answer}" | |
#from smolagents import Tool | |
#from langchain_community.document_loaders import WikipediaLoader | |
class WikiSearchTool(Tool): | |
name = "wiki_search" | |
description = "Search Wikipedia for a query and return up to 2 results." | |
inputs = { | |
"query": {"type": "string", "description": "The search term for Wikipedia."} | |
} | |
output_type = "string" | |
def forward(self, query: str) -> str: | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return formatted_search_docs | |
class StringReverseTool(Tool): | |
name = "reverse_message" | |
description = "When you received a strange text, try to reverse it and perform action described in reversed message." | |
inputs = { | |
"message": { | |
"type": "string", | |
"description": "A message, which looks like strange and can be reversed to get actions to execute." | |
} | |
} | |
output_type = "string" | |
def __init__(self): | |
return | |
def forward(self, message: str): | |
return message[::-1] | |
class KeywordsExtractorTool(Tool): | |
"""Extracts top 5 keywords from a given text based on frequency.""" | |
name = "keywords_extractor" | |
description = "This tool returns the 5 most frequent keywords occur in provided block of text." | |
inputs = { | |
"text": { | |
"type": "string", | |
"description": "Text to analyze for keywords.", | |
} | |
} | |
output_type = "string" | |
def forward(self, text: str) -> str: | |
try: | |
all_words = re.findall(r'\b\w+\b', text.lower()) | |
conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'} | |
filtered_words = [] | |
for w in all_words: | |
if w not in conjunctions: | |
filtered_words.push(w) | |
word_counts = Counter(filtered_words) | |
k = 5 | |
return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1]) | |
except Exception as e: | |
return f"Error during extracting most common words: {e}" | |
def parse_excel_to_json(task_id: str) -> dict: | |
""" | |
For a given task_id fetch and parse an Excel file and save parsed data in structured JSON file. | |
Args: | |
task_id: An task ID to fetch. | |
Returns: | |
{ | |
"task_id": str, | |
"sheets": { | |
"SheetName1": [ {col1: val1, col2: val2, ...}, ... ], | |
... | |
}, | |
"status": "Success" | "Error" | |
} | |
""" | |
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}" | |
try: | |
response = requests.get(url, timeout=100) | |
if response.status_code != 200: | |
return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"} | |
xls_content = pd.ExcelFile(BytesIO(response.content)) | |
json_sheets = {} | |
for sheet in xls_content.sheet_names: | |
df = xls_content.parse(sheet) | |
df = df.dropna(how="all") | |
rows = df.head(20).to_dict(orient="records") | |
json_sheets[sheet] = rows | |
return { | |
"task_id": task_id, | |
"sheets": json_sheets, | |
"status": "Success" | |
} | |
except Exception as e: | |
return { | |
"task_id": task_id, | |
"sheets": {}, | |
"status": f"Error in parsing Excel file: {str(e)}" | |
} | |
class VideoTranscriptionTool(Tool): | |
"""Fetch transcripts from YouTube videos""" | |
name = "transcript_video" | |
description = "Fetch text transcript from YouTube movies with optional timestamps" | |
inputs = { | |
"url": {"type": "string", "description": "YouTube video URL or ID"}, | |
"include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True} | |
} | |
output_type = "string" | |
def forward(self, url: str, include_timestamps: bool = False) -> str: | |
if "youtube.com/watch" in url: | |
video_id = url.split("v=")[1].split("&")[0] | |
elif "youtu.be/" in url: | |
video_id = url.split("youtu.be/")[1].split("?")[0] | |
elif len(url.strip()) == 11: # Direct ID | |
video_id = url.strip() | |
else: | |
return f"YouTube URL or ID: {url} is invalid!" | |
try: | |
transcription = YouTubeTranscriptApi.get_transcript(video_id) | |
if include_timestamps: | |
formatted_transcription = [] | |
for part in transcription: | |
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}" | |
formatted_transcription.append(f"[{timestamp}] {part['text']}") | |
return "\n".join(formatted_transcription) | |
else: | |
return " ".join([part['text'] for part in transcription]) | |
except Exception as e: | |
return f"Error in extracting YouTube transcript: {str(e)}" | |
class BasicAgent: | |
def __init__(self): | |
token = os.environ.get("HF_API_TOKEN") | |
model = HfApiModel( | |
temperature=0.1, | |
token=token | |
) | |
# Existing tools | |
search_tool = DuckDuckGoSearchTool() | |
wiki_search_tool = WikiSearchTool() | |
str_reverse_tool = StringReverseTool() | |
keywords_extract_tool = KeywordsExtractorTool() | |
speech_to_text_tool = SpeechToTextTool() | |
visit_webpage_tool = VisitWebpageTool() | |
final_answer_tool = FinalAnswerTool() | |
video_transcription_tool = VideoTranscriptionTool() | |
# ✅ New Llama Tool | |
code_llama_tool = CodeLlamaTool() | |
arxiv_search_tool = ArxivSearchTool() | |
doc_qa_tool = HuggingFaceDocumentQATool() | |
image_qa_tool = HuggingFaceImageQATool() | |
translation_tool = HuggingFaceTranslationTool() | |
python_tool = PythonCodeExecutionTool() | |
system_prompt = f""" | |
You are my general AI assistant. Your primary goal is to answer the user's question accurately and concisely. | |
Here's a detailed plan for answering: | |
1. **Understand the Question:** Carefully parse the question to identify key entities, relationships, and the type of information requested. | |
2. **Reasoning Steps (Chain-of-Thought):** Before attempting to answer, outline a step-by-step reasoning process. This helps in breaking down complex questions. | |
3. **Tool Selection and Usage:** Based on your reasoning, select the most appropriate tool(s) to gather information or perform operations. | |
- Use `search_tool` (DuckDuckGoSearchTool) for general web searches. | |
- Use `wiki_search_tool` for encyclopedic knowledge. | |
- Use `arxiv_search_tool` for scientific papers. | |
- Use `visit_webpage_tool` to read content from URLs found via search. | |
- Use `doc_qa_tool` for answering questions about specific documents (if provided). | |
- Use `image_qa_tool` for questions about images. | |
- Use `translation_tool` for language translation. | |
- Use `python_tool` or `code_llama_tool` for code generation, execution, or complex calculations/data manipulation. | |
- Use `keywords_extract_tool` to identify important terms from text. | |
- Use `str_reverse_tool` for string manipulation if needed (less common for Q&A). | |
- Use `speech_to_text_tool` or `video_transcription_tool` if audio/video input is part of the question. | |
- Use `parse_excel_to_json` if the question involves data from Excel. | |
4. **Information Synthesis:** Combine and process the information obtained from tools. Cross-reference if necessary to ensure accuracy. | |
5. **Formulate Final Answer:** Construct the final answer according to the specified format. | |
**Final Answer Format:** | |
Return your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]". | |
[YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question. | |
- If the answer is a number, do not use commas or units (e.g., $, %) unless explicitly specified in the question. | |
- If the answer is a string, do not use articles (a, an, the) or common abbreviations (e.g., "NY" for "New York") unless specified. Write digits in plain text unless specified. | |
- If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string. | |
- If you cannot find a definitive answer, state "FINAL ANSWER: I don't know." | |
Let's think step by step. | |
""" | |
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt | |
self.agent = CodeAgent( | |
model=model, | |
tools=[ | |
search_tool, wiki_search_tool, str_reverse_tool, | |
keywords_extract_tool, speech_to_text_tool, | |
visit_webpage_tool, final_answer_tool, | |
parse_excel_to_json, video_transcription_tool, | |
arxiv_search_tool, | |
doc_qa_tool, image_qa_tool, | |
translation_tool, python_tool, | |
code_llama_tool # 🔧 Add here | |
], | |
add_base_tools=True | |
) | |
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
answer = self.agent.run(question) | |
print(f"Agent returning answer: {answer}") | |
return answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |