Spaces:
Running
Running
# agent.py | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.utilities import WikipediaAPIWrapper | |
from langchain_community.document_loaders import ArxivLoader | |
#from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import Client, create_client | |
from sentence_transformers import SentenceTransformer | |
from langchain.embeddings.base import Embeddings | |
from typing import List | |
import numpy as np | |
import yaml | |
import pandas as pd | |
import uuid | |
import requests | |
import json | |
from langchain_core.documents import Document | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable | |
import re | |
from langchain_community.document_loaders import TextLoader, PyMuPDFLoader | |
from docx import Document as DocxDocument | |
import openpyxl | |
from io import StringIO | |
from transformers import BertTokenizer, BertModel | |
import torch | |
import torch.nn.functional as F | |
from langchain.agents import initialize_agent, AgentType | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain_community.tools import Tool | |
import time | |
from huggingface_hub import InferenceClient | |
from langchain_community.llms import HuggingFaceHub | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.agents import initialize_agent, Tool, AgentType | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def calculator(inputs: dict): | |
"""Perform mathematical operations based on the operation provided.""" | |
a = inputs.get("a") | |
b = inputs.get("b") | |
operation = inputs.get("operation") | |
if operation == "add": | |
return a + b | |
elif operation == "subtract": | |
return a - b | |
elif operation == "multiply": | |
return a * b | |
elif operation == "divide": | |
if b == 0: | |
return "Error: Division by zero" | |
return a / b | |
elif operation == "modulus": | |
return a % b | |
else: | |
return "Unknown operation" | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def wikidata_query(query: str) -> str: | |
""" | |
Run a SPARQL query on Wikidata and return results. | |
""" | |
endpoint_url = "https://query.wikidata.org/sparql" | |
headers = { | |
"Accept": "application/sparql-results+json" | |
} | |
response = requests.get(endpoint_url, headers=headers, params={"query": query}) | |
data = response.json() | |
return json.dumps(data, indent=2) | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
def analyze_attachment(file_path: str) -> str: | |
""" | |
Analyzes attachments including PY, PDF, TXT, DOCX, and XLSX files and returns text content. | |
Args: | |
file_path: Local path to the attachment. | |
""" | |
if not os.path.exists(file_path): | |
return f"File not found: {file_path}" | |
try: | |
ext = file_path.lower() | |
if ext.endswith(".pdf"): | |
loader = PyMuPDFLoader(file_path) | |
documents = loader.load() | |
content = "\n\n".join([doc.page_content for doc in documents]) | |
elif ext.endswith(".txt") or ext.endswith(".py"): | |
# Both .txt and .py are plain text files | |
with open(file_path, "r", encoding="utf-8") as file: | |
content = file.read() | |
elif ext.endswith(".docx"): | |
doc = DocxDocument(file_path) | |
content = "\n".join([para.text for para in doc.paragraphs]) | |
elif ext.endswith(".xlsx"): | |
wb = openpyxl.load_workbook(file_path, data_only=True) | |
content = "" | |
for sheet in wb: | |
content += f"Sheet: {sheet.title}\n" | |
for row in sheet.iter_rows(values_only=True): | |
content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n" | |
else: | |
return "Unsupported file format. Please use PY, PDF, TXT, DOCX, or XLSX." | |
return content[:3000] # Limit output size for readability | |
except Exception as e: | |
return f"An error occurred while processing the file: {str(e)}" | |
def get_youtube_transcript(url: str) -> str: | |
""" | |
Fetch transcript text from a YouTube video. | |
Args: | |
url (str): Full YouTube video URL. | |
Returns: | |
str: Transcript text as a single string. | |
Raises: | |
ValueError: If no transcript is available or URL is invalid. | |
""" | |
try: | |
# Extract video ID | |
video_id = extract_video_id(url) | |
transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
# Combine all transcript text | |
full_text = " ".join([entry['text'] for entry in transcript]) | |
return full_text | |
except (TranscriptsDisabled, VideoUnavailable) as e: | |
raise ValueError(f"Transcript not available: {e}") | |
except Exception as e: | |
raise ValueError(f"Failed to fetch transcript: {e}") | |
def extract_video_id(url: str) -> str: | |
""" | |
Extract the video ID from a YouTube URL. | |
""" | |
match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url) | |
if not match: | |
raise ValueError("Invalid YouTube URL") | |
return match.group(1) | |
# ----------------------------- | |
# Load configuration from YAML | |
# ----------------------------- | |
with open("config.yaml", "r") as f: | |
config = yaml.safe_load(f) | |
provider = config["provider"] | |
model_config = config["models"][provider] | |
#prompt_path = config["system_prompt_path"] | |
enabled_tool_names = config["tools"] | |
# ----------------------------- | |
# Load system prompt | |
# ----------------------------- | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# ----------------------------- | |
# Map tool names to functions | |
# ----------------------------- | |
tool_map = { | |
"multiply": multiply, | |
"add": add, | |
"subtract": subtract, | |
"divide": divide, | |
"modulus": modulus, | |
"wiki_search": wiki_search, | |
"web_search": web_search, | |
"arvix_search": arvix_search, | |
"get_youtube_transcript": get_youtube_transcript, | |
"extract_video_id": extract_video_id, | |
"analyze_attachment": analyze_attachment, | |
"wikidata_query": wikidata_query | |
} | |
tools = [tool_map[name] for name in enabled_tool_names] | |
# ------------------------------- | |
# Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically) | |
# ------------------------------- | |
# Here we assume the tasks are already fetched from a URL or file. | |
# For now, using an example JSON array directly. Replace this with the actual loading logic. | |
tasks = [ | |
{ | |
"task_id": "8e867cd7-cff9-4e6c-867a-ff5ddc2550be", | |
"question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of English Wikipedia.", | |
"Level": "1", | |
"file_name": "" | |
}, | |
{ | |
"task_id": "a1e91b78-d3d8-4675-bb8d-62741b4b68a6", | |
"question": "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?", | |
"Level": "1", | |
"file_name": "" | |
} | |
] | |
# ------------------------------- | |
# Step 3: Create Documents from Each JSON Object | |
# ------------------------------- | |
docs = [] | |
for task in tasks: | |
# Debugging: Print the keys of each task to ensure 'question' exists | |
print(f"Keys in task: {task.keys()}") | |
# Ensure the required field 'question' exists | |
if 'question' not in task: | |
print(f"Skipping task with missing 'question' field: {task}") | |
continue | |
content = task.get('question', "").strip() | |
if not content: | |
print(f"Skipping task with empty 'question': {task}") | |
continue | |
# Add unique ID to each document | |
task['id'] = str(uuid.uuid4()) | |
# Create a document from the task data | |
docs.append(Document(page_content=content, metadata=task)) | |
# ------------------------------- | |
# Step 4: Set up BERT Embeddings and FAISS VectorStore | |
# ------------------------------- | |
# ----------------------------- | |
# 1. Define Custom BERT Embedding Model | |
# ----------------------------- | |
class BERTEmbeddings(Embeddings): | |
def __init__(self, model_name='bert-base-uncased'): | |
self.tokenizer = BertTokenizer.from_pretrained(model_name) | |
self.model = BertModel.from_pretrained(model_name) | |
self.model.eval() # Set model to eval mode | |
def embed_documents(self, texts): | |
inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
embeddings = F.normalize(embeddings, p=2, dim=1) # Normalize for cosine similarity | |
return embeddings.cpu().numpy() | |
def embed_query(self, text): | |
return self.embed_documents([text])[0] | |
# ----------------------------- | |
# 2. Initialize Embedding Model | |
# ----------------------------- | |
embedding_model = BERTEmbeddings() | |
# ----------------------------- | |
# 3. Prepare Documents | |
# ----------------------------- | |
docs = [ | |
Document(page_content="Mercedes Sosa released many albums between 2000 and 2009.", metadata={"id": 1}), | |
Document(page_content="She was a prominent Argentine folk singer.", metadata={"id": 2}), | |
Document(page_content="Her album 'Al Despertar' was released in 1998.", metadata={"id": 3}), | |
Document(page_content="She continued releasing music well into the 2000s.", metadata={"id": 4}), | |
] | |
# ----------------------------- | |
# 4. Create FAISS Vector Store | |
# ----------------------------- | |
vector_store = FAISS.from_documents(docs, embedding_model) | |
vector_store.save_local("faiss_index") | |
# ----------------------------- | |
# 6. Create LangChain Retriever Tool | |
# ----------------------------- | |
retriever = vector_store.as_retriever() | |
question_retriever_tool = create_retriever_tool( | |
retriever=retriever, | |
name="Question_Search", | |
description="A tool to retrieve documents related to a user's question." | |
) | |
# ------------------------------- | |
# Step 6: Create LangChain Tools | |
# ------------------------------- | |
calc_tool = calculator | |
file_tool = analyze_attachment | |
web_tool = web_search | |
wiki_tool = wiki_search | |
arvix_tool = arvix_search | |
youtube_tool = get_youtube_transcript | |
video_tool = extract_video_id | |
analyze_tool = analyze_attachment | |
wikiq_tool = wikidata_query | |
# ------------------------------- | |
# Step 7: Create the Planner-Agent Logic | |
# ------------------------------- | |
# Define the tools (as you've already done) | |
tools = [wiki_tool, calc_tool, file_tool, web_tool, arvix_tool, youtube_tool, video_tool, analyze_tool, wikiq_tool] | |
# Define the LLM before using it | |
#llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # or "gpt-3.5-turbo" "gpt-4" | |
#llm = ChatMistralAI(model="mistral-7b-instruct-v0.1") | |
# Get the Hugging Face API token from the environment variable | |
hf_token = os.getenv("HF_TOKEN") | |
login(token="HF_TOKEN") | |
# Initialize the desired model and parameters | |
model_name = "mistralai/Mistral-7B-Instruct-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Create a text generation pipeline | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.15 | |
) | |
# Create LangChain LLM wrapper | |
llm = HuggingFacePipeline(pipeline=pipe) | |
# Initialize the LangChain agent with the tool(s) and the model | |
agent = initialize_agent( | |
tools=tools, | |
llm=llm, | |
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, | |
verbose=True | |
) | |
# ------------------------------- | |
# Step 8: Use the Planner, Classifier, and Decision Logic | |
# ------------------------------- | |
def process_question(question): | |
# Step 1: Planner generates the task sequence | |
tasks = planner(question) | |
print(f"Tasks to perform: {tasks}") | |
# Step 2: Classify the task (based on question) | |
task_type = task_classifier(question) | |
print(f"Task type: {task_type}") | |
# Step 3: Use the classifier and planner to decide on the next task or node | |
state = {"question": question, "last_response": ""} | |
next_task = decide_task(state) | |
print(f"Next task: {next_task}") | |
# Step 4: Use node skipper logic (skip if needed) | |
skip = node_skipper(state) | |
if skip: | |
print(f"Skipping to {skip}") | |
return skip # Or move directly to generating answer | |
# Step 5: Execute task (with error handling) | |
try: | |
if task_type == "wiki_search": | |
response = wiki_tool(question) | |
elif task_type == "math": | |
response = calc_tool(question) | |
else: | |
response = "Default answer logic" | |
# Step 6: Final response formatting | |
final_response = final_answer_tool(state, {'wiki_search': response}) | |
return final_response | |
except Exception as e: | |
print(f"Error executing task: {e}") | |
return "Sorry, I encountered an error processing your request." | |
# Run the process | |
question = "How many albums did Mercedes Sosa release between 2000 and 2009?" | |
response = agent.invoke(question) | |
print("Final Response:", response) | |
def retriever(state: MessagesState): | |
"""Retriever node using similarity scores for filtering""" | |
query = state["messages"][0].content | |
results = vector_store.similarity_search_with_score(query, k=4) # top 4 matches | |
# Dynamically adjust threshold based on query complexity | |
threshold = 0.75 if "who" in query else 0.8 | |
filtered = [doc for doc, score in results if score < threshold] | |
# Provide a default message if no documents found | |
if not filtered: | |
example_msg = HumanMessage(content="No relevant documents found.") | |
else: | |
content = "\n\n".join(doc.page_content for doc in filtered) | |
example_msg = HumanMessage( | |
content=f"Here are relevant reference documents:\n\n{content}" | |
) | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
# ---------------------------------------------------------------- | |
# LLM Loader | |
# ---------------------------------------------------------------- | |
def get_llm(provider: str, config: dict): | |
if provider == "google": | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
return ChatGoogleGenerativeAI(model=config["model"], temperature=config["temperature"]) | |
elif provider == "groq": | |
from langchain_groq import ChatGroq | |
return ChatGroq(model=config["model"], temperature=config["temperature"]) | |
elif provider == "huggingface": | |
from langchain_huggingface import ChatHuggingFace | |
from langchain_huggingface import HuggingFaceEndpoint | |
return ChatHuggingFace( | |
llm=HuggingFaceEndpoint(url=config["url"], temperature=config["temperature"]) | |
) | |
else: | |
raise ValueError(f"Invalid provider: {provider}") | |
# ---------------------------------------------------------------- | |
# Planning & Execution Logic | |
# ---------------------------------------------------------------- | |
def planner(question: str) -> list: | |
if "calculate" in question or any(op in question for op in ["add", "subtract", "multiply", "divide", "modulus"]): | |
return ["math"] | |
elif "wiki" in question or "who is" in question.lower(): | |
return ["wiki_search"] | |
else: | |
return ["default"] | |
def task_classifier(question: str) -> str: | |
if any(op in question.lower() for op in ["add", "subtract", "multiply", "divide", "modulus"]): | |
return "math" | |
elif "who" in question.lower() or "what is" in question.lower(): | |
return "wiki_search" | |
else: | |
return "default" | |
# Function to extract math operation from the question | |
def extract_math_from_question(question: str): | |
"""Extract numbers and operator from a math question.""" | |
match = re.search(r'(\d+)\s*(\+|\-|\*|\/|\%)\s*(\d+)', question) | |
if match: | |
num1 = int(match.group(1)) | |
operator = match.group(2) | |
num2 = int(match.group(3)) | |
return num1, operator, num2 | |
else: | |
return None | |
def decide_task(state: dict) -> str: | |
return planner(state["question"])[0] | |
def node_skipper(state: dict) -> bool: | |
return False | |
def generate_final_answer(state: dict, task_results: dict) -> str: | |
if "wiki_search" in task_results: | |
return f"📚 Wiki Summary:\n{task_results['wiki_search']}" | |
elif "math" in task_results: | |
return f"🧮 Math Result: {task_results['math']}" | |
else: | |
return "🤖 Unable to generate a specific answer." | |
# ---------------------------------------------------------------- | |
# Process Function (Main Agent Runner) | |
# ---------------------------------------------------------------- | |
def process_question(question: str): | |
tasks = planner(question) | |
print(f"Tasks to perform: {tasks}") | |
task_type = task_classifier(question) | |
print(f"Task type: {task_type}") | |
state = {"question": question, "last_response": "", "messages": [HumanMessage(content=question)]} | |
next_task = decide_task(state) | |
print(f"Next task: {next_task}") | |
if node_skipper(state): | |
print(f"Skipping task: {next_task}") | |
return "Task skipped." | |
try: | |
if task_type == "wiki_search": | |
response = wiki_tool.run(question) | |
elif task_type == "math": | |
# You should dynamically parse these inputs in real use | |
response = calc_tool.run(question) | |
elif task_type == "retriever": | |
retrieval_result = retriever(state) | |
response = retrieval_result["messages"][-1].content | |
else: | |
response = "Default fallback answer." | |
return generate_final_answer(state, {task_type: response}) | |
except Exception as e: | |
print(f"❌ Error: {e}") | |
return "Sorry, I encountered an error processing your request." | |
# Build graph function | |
def build_graph(provider: str, model_config: dict): | |
from langgraph.prebuilt.tool_node import ToolNode | |
llm = get_llm(provider, model_config) | |
llm_with_tools = llm.bind_tools(tools) | |
sys_msg = SystemMessage(content="You are a helpful assistant.") | |
def assistant(state: MessagesState): | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
user_query = state["messages"][0].content | |
similar_docs = vector_store.similarity_search(user_query) | |
if not similar_docs: | |
wiki_result = wiki_tool.run(user_query) | |
return { | |
"messages": [ | |
sys_msg, | |
state["messages"][0], | |
HumanMessage(content=f"Using Wikipedia search:\n\n{wiki_result}") | |
] | |
} | |
else: | |
return { | |
"messages": [ | |
sys_msg, | |
state["messages"][0], | |
HumanMessage(content=f"Reference:\n\n{similar_docs[0].page_content}") | |
] | |
} | |
def tools_condition(state: MessagesState) -> str: | |
if "use tool" in state["messages"][-1].content.lower(): | |
return "tools" | |
else: | |
return END | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.set_entry_point("retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges("assistant", tools_condition) | |
builder.add_edge("tools", "assistant") | |
# Compile graph | |
return builder.compile() | |