Spaces:
Sleeping
Sleeping
| # agent.py | |
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition | |
| from langgraph.prebuilt import ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader | |
| from langchain_community.utilities import WikipediaAPIWrapper | |
| from langchain_community.document_loaders import ArxivLoader | |
| #from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain.tools.retriever import create_retriever_tool | |
| from supabase.client import Client, create_client | |
| from sentence_transformers import SentenceTransformer | |
| from langchain.embeddings.base import Embeddings | |
| from typing import List | |
| import numpy as np | |
| import yaml | |
| import pandas as pd | |
| import uuid | |
| import requests | |
| import json | |
| from langchain_core.documents import Document | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from youtube_transcript_api import YouTubeTranscriptApi | |
| from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable | |
| import re | |
| from langchain_community.document_loaders import TextLoader, PyMuPDFLoader | |
| from docx import Document as DocxDocument | |
| import openpyxl | |
| from io import StringIO | |
| from transformers import BertTokenizer, BertModel | |
| import torch | |
| import torch.nn.functional as F | |
| from langchain.agents import initialize_agent, AgentType | |
| from langchain_community.chat_models import ChatOpenAI | |
| from langchain_community.tools import Tool | |
| import time | |
| from huggingface_hub import InferenceClient | |
| from langchain_community.llms import HuggingFaceHub | |
| from langchain.prompts import PromptTemplate | |
| from langchain.chains import LLMChain | |
| from langchain.agents import initialize_agent, Tool, AgentType | |
| from transformers import pipeline | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| load_dotenv() | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a - b | |
| def divide(a: int, b: int) -> int: | |
| """Divide two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Get the modulus of two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a % b | |
| def calculator(inputs: dict): | |
| """Perform mathematical operations based on the operation provided.""" | |
| a = inputs.get("a") | |
| b = inputs.get("b") | |
| operation = inputs.get("operation") | |
| if operation == "add": | |
| return a + b | |
| elif operation == "subtract": | |
| return a - b | |
| elif operation == "multiply": | |
| return a * b | |
| elif operation == "divide": | |
| if b == 0: | |
| return "Error: Division by zero" | |
| return a / b | |
| elif operation == "modulus": | |
| return a % b | |
| else: | |
| return "Unknown operation" | |
| def wiki_search(query: str) -> str: | |
| """Search Wikipedia for a query and return maximum 2 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"wiki_results": formatted_search_docs} | |
| def wikidata_query(query: str) -> str: | |
| """ | |
| Run a SPARQL query on Wikidata and return results. | |
| """ | |
| endpoint_url = "https://query.wikidata.org/sparql" | |
| headers = { | |
| "Accept": "application/sparql-results+json" | |
| } | |
| response = requests.get(endpoint_url, headers=headers, params={"query": query}) | |
| data = response.json() | |
| return json.dumps(data, indent=2) | |
| def web_search(query: str) -> str: | |
| """Search Tavily for a query and return maximum 3 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"web_results": formatted_search_docs} | |
| def arvix_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 3 result. | |
| Args: | |
| query: The search query.""" | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"arvix_results": formatted_search_docs} | |
| def analyze_attachment(file_path: str) -> str: | |
| """ | |
| Analyzes attachments including PY, PDF, TXT, DOCX, and XLSX files and returns text content. | |
| Args: | |
| file_path: Local path to the attachment. | |
| """ | |
| if not os.path.exists(file_path): | |
| return f"File not found: {file_path}" | |
| try: | |
| ext = file_path.lower() | |
| if ext.endswith(".pdf"): | |
| loader = PyMuPDFLoader(file_path) | |
| documents = loader.load() | |
| content = "\n\n".join([doc.page_content for doc in documents]) | |
| elif ext.endswith(".txt") or ext.endswith(".py"): | |
| # Both .txt and .py are plain text files | |
| with open(file_path, "r", encoding="utf-8") as file: | |
| content = file.read() | |
| elif ext.endswith(".docx"): | |
| doc = DocxDocument(file_path) | |
| content = "\n".join([para.text for para in doc.paragraphs]) | |
| elif ext.endswith(".xlsx"): | |
| wb = openpyxl.load_workbook(file_path, data_only=True) | |
| content = "" | |
| for sheet in wb: | |
| content += f"Sheet: {sheet.title}\n" | |
| for row in sheet.iter_rows(values_only=True): | |
| content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n" | |
| else: | |
| return "Unsupported file format. Please use PY, PDF, TXT, DOCX, or XLSX." | |
| return content[:3000] # Limit output size for readability | |
| except Exception as e: | |
| return f"An error occurred while processing the file: {str(e)}" | |
| def get_youtube_transcript(url: str) -> str: | |
| """ | |
| Fetch transcript text from a YouTube video. | |
| Args: | |
| url (str): Full YouTube video URL. | |
| Returns: | |
| str: Transcript text as a single string. | |
| Raises: | |
| ValueError: If no transcript is available or URL is invalid. | |
| """ | |
| try: | |
| # Extract video ID | |
| video_id = extract_video_id(url) | |
| transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
| # Combine all transcript text | |
| full_text = " ".join([entry['text'] for entry in transcript]) | |
| return full_text | |
| except (TranscriptsDisabled, VideoUnavailable) as e: | |
| raise ValueError(f"Transcript not available: {e}") | |
| except Exception as e: | |
| raise ValueError(f"Failed to fetch transcript: {e}") | |
| def extract_video_id(url: str) -> str: | |
| """ | |
| Extract the video ID from a YouTube URL. | |
| """ | |
| match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url) | |
| if not match: | |
| raise ValueError("Invalid YouTube URL") | |
| return match.group(1) | |
| # ----------------------------- | |
| # Load configuration from YAML | |
| # ----------------------------- | |
| with open("config.yaml", "r") as f: | |
| config = yaml.safe_load(f) | |
| provider = config["provider"] | |
| model_config = config["models"][provider] | |
| #prompt_path = config["system_prompt_path"] | |
| enabled_tool_names = config["tools"] | |
| # ----------------------------- | |
| # Load system prompt | |
| # ----------------------------- | |
| # load the system prompt from the file | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| # System message | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # ----------------------------- | |
| # Map tool names to functions | |
| # ----------------------------- | |
| tool_map = { | |
| "multiply": multiply, | |
| "add": add, | |
| "subtract": subtract, | |
| "divide": divide, | |
| "modulus": modulus, | |
| "wiki_search": wiki_search, | |
| "web_search": web_search, | |
| "arvix_search": arvix_search, | |
| "get_youtube_transcript": get_youtube_transcript, | |
| "extract_video_id": extract_video_id, | |
| "analyze_attachment": analyze_attachment, | |
| "wikidata_query": wikidata_query | |
| } | |
| tools = [tool_map[name] for name in enabled_tool_names] | |
| # ------------------------------- | |
| # Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically) | |
| # ------------------------------- | |
| # Here we assume the tasks are already fetched from a URL or file. | |
| # For now, using an example JSON array directly. Replace this with the actual loading logic. | |
| tasks = [ | |
| { | |
| "task_id": "8e867cd7-cff9-4e6c-867a-ff5ddc2550be", | |
| "question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of English Wikipedia.", | |
| "Level": "1", | |
| "file_name": "" | |
| }, | |
| { | |
| "task_id": "a1e91b78-d3d8-4675-bb8d-62741b4b68a6", | |
| "question": "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?", | |
| "Level": "1", | |
| "file_name": "" | |
| } | |
| ] | |
| # ------------------------------- | |
| # Step 3: Create Documents from Each JSON Object | |
| # ------------------------------- | |
| docs = [] | |
| for task in tasks: | |
| # Debugging: Print the keys of each task to ensure 'question' exists | |
| print(f"Keys in task: {task.keys()}") | |
| # Ensure the required field 'question' exists | |
| if 'question' not in task: | |
| print(f"Skipping task with missing 'question' field: {task}") | |
| continue | |
| content = task.get('question', "").strip() | |
| if not content: | |
| print(f"Skipping task with empty 'question': {task}") | |
| continue | |
| # Add unique ID to each document | |
| task['id'] = str(uuid.uuid4()) | |
| # Create a document from the task data | |
| docs.append(Document(page_content=content, metadata=task)) | |
| # ------------------------------- | |
| # Step 4: Set up BERT Embeddings and FAISS VectorStore | |
| # ------------------------------- | |
| # ----------------------------- | |
| # 1. Define Custom BERT Embedding Model | |
| # ----------------------------- | |
| class BERTEmbeddings(Embeddings): | |
| def __init__(self, model_name='bert-base-uncased'): | |
| self.tokenizer = BertTokenizer.from_pretrained(model_name) | |
| self.model = BertModel.from_pretrained(model_name) | |
| self.model.eval() # Set model to eval mode | |
| def embed_documents(self, texts): | |
| inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True) | |
| with torch.no_grad(): | |
| outputs = self.model(**inputs) | |
| embeddings = outputs.last_hidden_state.mean(dim=1) | |
| embeddings = F.normalize(embeddings, p=2, dim=1) # Normalize for cosine similarity | |
| return embeddings.cpu().numpy() | |
| def embed_query(self, text): | |
| return self.embed_documents([text])[0] | |
| # ----------------------------- | |
| # 2. Initialize Embedding Model | |
| # ----------------------------- | |
| embedding_model = BERTEmbeddings() | |
| # ----------------------------- | |
| # 3. Prepare Documents | |
| # ----------------------------- | |
| docs = [ | |
| Document(page_content="Mercedes Sosa released many albums between 2000 and 2009.", metadata={"id": 1}), | |
| Document(page_content="She was a prominent Argentine folk singer.", metadata={"id": 2}), | |
| Document(page_content="Her album 'Al Despertar' was released in 1998.", metadata={"id": 3}), | |
| Document(page_content="She continued releasing music well into the 2000s.", metadata={"id": 4}), | |
| ] | |
| # ----------------------------- | |
| # 4. Create FAISS Vector Store | |
| # ----------------------------- | |
| vector_store = FAISS.from_documents(docs, embedding_model) | |
| vector_store.save_local("faiss_index") | |
| # ----------------------------- | |
| # 6. Create LangChain Retriever Tool | |
| # ----------------------------- | |
| retriever = vector_store.as_retriever() | |
| question_retriever_tool = create_retriever_tool( | |
| retriever=retriever, | |
| name="Question_Search", | |
| description="A tool to retrieve documents related to a user's question." | |
| ) | |
| # ------------------------------- | |
| # Step 6: Create LangChain Tools | |
| # ------------------------------- | |
| calc_tool = calculator | |
| file_tool = analyze_attachment | |
| web_tool = web_search | |
| wiki_tool = wiki_search | |
| arvix_tool = arvix_search | |
| youtube_tool = get_youtube_transcript | |
| video_tool = extract_video_id | |
| analyze_tool = analyze_attachment | |
| wikiq_tool = wikidata_query | |
| # ------------------------------- | |
| # Step 7: Create the Planner-Agent Logic | |
| # ------------------------------- | |
| # Define the tools (as you've already done) | |
| tools = [wiki_tool, calc_tool, file_tool, web_tool, arvix_tool, youtube_tool, video_tool, analyze_tool, wikiq_tool] | |
| # Define the LLM before using it | |
| #llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # or "gpt-3.5-turbo" "gpt-4" | |
| #llm = ChatMistralAI(model="mistral-7b-instruct-v0.1") | |
| # Get the Hugging Face API token from the environment variable | |
| hf_token = os.getenv("HF_TOKEN") | |
| login(token="HF_TOKEN") | |
| # Initialize the desired model and parameters | |
| model_name = "mistralai/Mistral-7B-Instruct-v0.1" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Create a text generation pipeline | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=512, | |
| temperature=0.7, | |
| top_p=0.95, | |
| repetition_penalty=1.15 | |
| ) | |
| # Create LangChain LLM wrapper | |
| llm = HuggingFacePipeline(pipeline=pipe) | |
| # Initialize the LangChain agent with the tool(s) and the model | |
| agent = initialize_agent( | |
| tools=tools, | |
| llm=llm, | |
| agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, | |
| verbose=True | |
| ) | |
| # ------------------------------- | |
| # Step 8: Use the Planner, Classifier, and Decision Logic | |
| # ------------------------------- | |
| def process_question(question): | |
| # Step 1: Planner generates the task sequence | |
| tasks = planner(question) | |
| print(f"Tasks to perform: {tasks}") | |
| # Step 2: Classify the task (based on question) | |
| task_type = task_classifier(question) | |
| print(f"Task type: {task_type}") | |
| # Step 3: Use the classifier and planner to decide on the next task or node | |
| state = {"question": question, "last_response": ""} | |
| next_task = decide_task(state) | |
| print(f"Next task: {next_task}") | |
| # Step 4: Use node skipper logic (skip if needed) | |
| skip = node_skipper(state) | |
| if skip: | |
| print(f"Skipping to {skip}") | |
| return skip # Or move directly to generating answer | |
| # Step 5: Execute task (with error handling) | |
| try: | |
| if task_type == "wiki_search": | |
| response = wiki_tool(question) | |
| elif task_type == "math": | |
| response = calc_tool(question) | |
| else: | |
| response = "Default answer logic" | |
| # Step 6: Final response formatting | |
| final_response = final_answer_tool(state, {'wiki_search': response}) | |
| return final_response | |
| except Exception as e: | |
| print(f"Error executing task: {e}") | |
| return "Sorry, I encountered an error processing your request." | |
| # Run the process | |
| question = "How many albums did Mercedes Sosa release between 2000 and 2009?" | |
| response = agent.invoke(question) | |
| print("Final Response:", response) | |
| def retriever(state: MessagesState): | |
| """Retriever node using similarity scores for filtering""" | |
| query = state["messages"][0].content | |
| results = vector_store.similarity_search_with_score(query, k=4) # top 4 matches | |
| # Dynamically adjust threshold based on query complexity | |
| threshold = 0.75 if "who" in query else 0.8 | |
| filtered = [doc for doc, score in results if score < threshold] | |
| # Provide a default message if no documents found | |
| if not filtered: | |
| example_msg = HumanMessage(content="No relevant documents found.") | |
| else: | |
| content = "\n\n".join(doc.page_content for doc in filtered) | |
| example_msg = HumanMessage( | |
| content=f"Here are relevant reference documents:\n\n{content}" | |
| ) | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| # ---------------------------------------------------------------- | |
| # LLM Loader | |
| # ---------------------------------------------------------------- | |
| def get_llm(provider: str, config: dict): | |
| if provider == "google": | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| return ChatGoogleGenerativeAI(model=config["model"], temperature=config["temperature"]) | |
| elif provider == "groq": | |
| from langchain_groq import ChatGroq | |
| return ChatGroq(model=config["model"], temperature=config["temperature"]) | |
| elif provider == "huggingface": | |
| from langchain_huggingface import ChatHuggingFace | |
| from langchain_huggingface import HuggingFaceEndpoint | |
| return ChatHuggingFace( | |
| llm=HuggingFaceEndpoint(url=config["url"], temperature=config["temperature"]) | |
| ) | |
| else: | |
| raise ValueError(f"Invalid provider: {provider}") | |
| # ---------------------------------------------------------------- | |
| # Planning & Execution Logic | |
| # ---------------------------------------------------------------- | |
| def planner(question: str) -> list: | |
| if "calculate" in question or any(op in question for op in ["add", "subtract", "multiply", "divide", "modulus"]): | |
| return ["math"] | |
| elif "wiki" in question or "who is" in question.lower(): | |
| return ["wiki_search"] | |
| else: | |
| return ["default"] | |
| def task_classifier(question: str) -> str: | |
| if any(op in question.lower() for op in ["add", "subtract", "multiply", "divide", "modulus"]): | |
| return "math" | |
| elif "who" in question.lower() or "what is" in question.lower(): | |
| return "wiki_search" | |
| else: | |
| return "default" | |
| # Function to extract math operation from the question | |
| def extract_math_from_question(question: str): | |
| """Extract numbers and operator from a math question.""" | |
| match = re.search(r'(\d+)\s*(\+|\-|\*|\/|\%)\s*(\d+)', question) | |
| if match: | |
| num1 = int(match.group(1)) | |
| operator = match.group(2) | |
| num2 = int(match.group(3)) | |
| return num1, operator, num2 | |
| else: | |
| return None | |
| def decide_task(state: dict) -> str: | |
| return planner(state["question"])[0] | |
| def node_skipper(state: dict) -> bool: | |
| return False | |
| def generate_final_answer(state: dict, task_results: dict) -> str: | |
| if "wiki_search" in task_results: | |
| return f"📚 Wiki Summary:\n{task_results['wiki_search']}" | |
| elif "math" in task_results: | |
| return f"🧮 Math Result: {task_results['math']}" | |
| else: | |
| return "🤖 Unable to generate a specific answer." | |
| # ---------------------------------------------------------------- | |
| # Process Function (Main Agent Runner) | |
| # ---------------------------------------------------------------- | |
| def process_question(question: str): | |
| tasks = planner(question) | |
| print(f"Tasks to perform: {tasks}") | |
| task_type = task_classifier(question) | |
| print(f"Task type: {task_type}") | |
| state = {"question": question, "last_response": "", "messages": [HumanMessage(content=question)]} | |
| next_task = decide_task(state) | |
| print(f"Next task: {next_task}") | |
| if node_skipper(state): | |
| print(f"Skipping task: {next_task}") | |
| return "Task skipped." | |
| try: | |
| if task_type == "wiki_search": | |
| response = wiki_tool.run(question) | |
| elif task_type == "math": | |
| # You should dynamically parse these inputs in real use | |
| response = calc_tool.run(question) | |
| elif task_type == "retriever": | |
| retrieval_result = retriever(state) | |
| response = retrieval_result["messages"][-1].content | |
| else: | |
| response = "Default fallback answer." | |
| return generate_final_answer(state, {task_type: response}) | |
| except Exception as e: | |
| print(f"❌ Error: {e}") | |
| return "Sorry, I encountered an error processing your request." | |
| # Build graph function | |
| def build_graph(provider: str, model_config: dict): | |
| from langgraph.prebuilt.tool_node import ToolNode | |
| llm = get_llm(provider, model_config) | |
| llm_with_tools = llm.bind_tools(tools) | |
| sys_msg = SystemMessage(content="You are a helpful assistant.") | |
| def assistant(state: MessagesState): | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever(state: MessagesState): | |
| user_query = state["messages"][0].content | |
| similar_docs = vector_store.similarity_search(user_query) | |
| if not similar_docs: | |
| wiki_result = wiki_tool.run(user_query) | |
| return { | |
| "messages": [ | |
| sys_msg, | |
| state["messages"][0], | |
| HumanMessage(content=f"Using Wikipedia search:\n\n{wiki_result}") | |
| ] | |
| } | |
| else: | |
| return { | |
| "messages": [ | |
| sys_msg, | |
| state["messages"][0], | |
| HumanMessage(content=f"Reference:\n\n{similar_docs[0].page_content}") | |
| ] | |
| } | |
| def tools_condition(state: MessagesState) -> str: | |
| if "use tool" in state["messages"][-1].content.lower(): | |
| return "tools" | |
| else: | |
| return END | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.set_entry_point("retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges("assistant", tools_condition) | |
| builder.add_edge("tools", "assistant") | |
| # Compile graph | |
| return builder.compile() | |