Spaces:
Running
Running
Update app.py
Browse files
agent.py
CHANGED
@@ -138,6 +138,19 @@ sentence_transformer.max_seq_length = 512 # Set max sequence length
|
|
138 |
# Initialize embeddings with the model name (dim=768)
|
139 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# Initialize Supabase client
|
142 |
supabase: Client = create_client(
|
143 |
os.environ.get("SUPABASE_URL"),
|
|
|
138 |
# Initialize embeddings with the model name (dim=768)
|
139 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
140 |
|
141 |
+
|
142 |
+
try:
|
143 |
+
results = retriever.get_relevant_documents("What is vector search?")
|
144 |
+
if not results:
|
145 |
+
raise ValueError("No documents found in the search results.")
|
146 |
+
# Access the first result safely if it exists
|
147 |
+
first_result = results[0]
|
148 |
+
print("First result:", first_result)
|
149 |
+
except Exception as e:
|
150 |
+
print(f"Error: {e}")
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
# Initialize Supabase client
|
155 |
supabase: Client = create_client(
|
156 |
os.environ.get("SUPABASE_URL"),
|