Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
|
@@ -17,6 +17,10 @@ from langchain_core.tools import tool
|
|
| 17 |
from langchain.tools.retriever import create_retriever_tool
|
| 18 |
from supabase.client import Client, create_client
|
| 19 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
load_dotenv()
|
| 22 |
|
|
@@ -122,14 +126,20 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
| 122 |
# System message
|
| 123 |
sys_msg = SystemMessage(content=system_prompt)
|
| 124 |
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
# Initialize embeddings with the
|
| 132 |
-
embeddings = HuggingFaceEmbeddings(
|
| 133 |
|
| 134 |
# Initialize Supabase client
|
| 135 |
supabase: Client = create_client(
|
|
@@ -137,19 +147,19 @@ supabase: Client = create_client(
|
|
| 137 |
os.environ.get("SUPABASE_SERVICE_KEY")
|
| 138 |
)
|
| 139 |
|
| 140 |
-
#
|
| 141 |
vector_store = SupabaseVectorStore(
|
| 142 |
client=supabase,
|
| 143 |
embedding=embeddings,
|
| 144 |
table_name="documents",
|
| 145 |
-
query_name="match_documents_langchain"
|
| 146 |
)
|
| 147 |
|
| 148 |
# Create retriever tool
|
| 149 |
create_retriever_tool = create_retriever_tool(
|
| 150 |
retriever=vector_store.as_retriever(),
|
| 151 |
name="Question Search",
|
| 152 |
-
description="A tool to retrieve similar questions from a vector store."
|
| 153 |
)
|
| 154 |
|
| 155 |
|
|
|
|
| 17 |
from langchain.tools.retriever import create_retriever_tool
|
| 18 |
from supabase.client import Client, create_client
|
| 19 |
from sentence_transformers import SentenceTransformer
|
| 20 |
+
from sentence_transformers import SentenceTransformer
|
| 21 |
+
from langchain.embeddings.base import Embeddings
|
| 22 |
+
from typing import List
|
| 23 |
+
import numpy as np
|
| 24 |
|
| 25 |
load_dotenv()
|
| 26 |
|
|
|
|
| 126 |
# System message
|
| 127 |
sys_msg = SystemMessage(content=system_prompt)
|
| 128 |
|
| 129 |
+
# Custom embedding class
|
| 130 |
+
from sentence_transformers import SentenceTransformer
|
| 131 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 132 |
+
from supabase import create_client, Client
|
| 133 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 134 |
+
from langchain.tools import create_retriever_tool
|
| 135 |
+
import os
|
| 136 |
+
|
| 137 |
+
# Initialize SentenceTransformer and set max_seq_length
|
| 138 |
+
sentence_transformer = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
| 139 |
+
sentence_transformer.max_seq_length = 2048 # Set max sequence length
|
| 140 |
|
| 141 |
+
# Initialize embeddings with the model name (dim=768)
|
| 142 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 143 |
|
| 144 |
# Initialize Supabase client
|
| 145 |
supabase: Client = create_client(
|
|
|
|
| 147 |
os.environ.get("SUPABASE_SERVICE_KEY")
|
| 148 |
)
|
| 149 |
|
| 150 |
+
# Initialize Supabase vector store
|
| 151 |
vector_store = SupabaseVectorStore(
|
| 152 |
client=supabase,
|
| 153 |
embedding=embeddings,
|
| 154 |
table_name="documents",
|
| 155 |
+
query_name="match_documents_langchain"
|
| 156 |
)
|
| 157 |
|
| 158 |
# Create retriever tool
|
| 159 |
create_retriever_tool = create_retriever_tool(
|
| 160 |
retriever=vector_store.as_retriever(),
|
| 161 |
name="Question Search",
|
| 162 |
+
description="A tool to retrieve similar questions from a vector store."
|
| 163 |
)
|
| 164 |
|
| 165 |
|