Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,278 +1,322 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
from
|
7 |
from dotenv import load_dotenv
|
8 |
-
import heapq
|
9 |
-
from collections import Counter
|
10 |
-
import re
|
11 |
-
from io import BytesIO
|
12 |
-
from youtube_transcript_api import YouTubeTranscriptApi
|
13 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
14 |
-
from langchain_community.document_loaders import WikipediaLoader
|
15 |
-
from langchain_community.utilities import WikipediaAPIWrapper
|
16 |
-
from langchain_community.document_loaders import ArxivLoader
|
17 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
#Load environment variables
|
24 |
load_dotenv()
|
25 |
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
|
|
28 |
|
29 |
-
|
30 |
-
#from langchain_community.document_loaders import WikipediaLoader
|
31 |
-
|
32 |
-
class WikiSearchTool(Tool):
|
33 |
-
name = "wiki_search"
|
34 |
-
description = "Search Wikipedia for a query and return up to 2 results."
|
35 |
-
inputs = {
|
36 |
-
"query": {"type": "string", "description": "The search term for Wikipedia."}
|
37 |
-
}
|
38 |
-
output_type = "string"
|
39 |
-
|
40 |
-
def forward(self, query: str) -> str:
|
41 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
42 |
-
|
43 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
44 |
-
[
|
45 |
-
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
46 |
-
for doc in search_docs
|
47 |
-
]
|
48 |
-
)
|
49 |
-
return formatted_search_docs
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
class StringReverseTool(Tool):
|
55 |
-
name = "reverse_message"
|
56 |
-
description = "When you received a strange text, try to reverse it and perform action described in reversed message."
|
57 |
-
inputs = {
|
58 |
-
"message": {
|
59 |
-
"type": "string",
|
60 |
-
"description": "A message, which looks like strange and can be reversed to get actions to execute."
|
61 |
-
}
|
62 |
-
}
|
63 |
-
output_type = "string"
|
64 |
-
|
65 |
-
def __init__(self):
|
66 |
-
return
|
67 |
-
|
68 |
-
def forward(self, message: str):
|
69 |
-
return message[::-1]
|
70 |
-
|
71 |
-
class KeywordsExtractorTool(Tool):
|
72 |
-
"""Extracts top 5 keywords from a given text based on frequency."""
|
73 |
-
|
74 |
-
name = "keywords_extractor"
|
75 |
-
description = "This tool returns the 5 most frequent keywords occur in provided block of text."
|
76 |
-
|
77 |
-
inputs = {
|
78 |
-
"text": {
|
79 |
-
"type": "string",
|
80 |
-
"description": "Text to analyze for keywords.",
|
81 |
-
}
|
82 |
-
}
|
83 |
-
output_type = "string"
|
84 |
-
|
85 |
-
def forward(self, text: str) -> str:
|
86 |
-
try:
|
87 |
-
all_words = re.findall(r'\b\w+\b', text.lower())
|
88 |
-
conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'}
|
89 |
-
filtered_words = []
|
90 |
-
for w in all_words:
|
91 |
-
if w not in conjunctions:
|
92 |
-
filtered_words.push(w)
|
93 |
-
word_counts = Counter(filtered_words)
|
94 |
-
k = 5
|
95 |
-
return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1])
|
96 |
-
except Exception as e:
|
97 |
-
return f"Error during extracting most common words: {e}"
|
98 |
-
|
99 |
-
@tool
|
100 |
-
def parse_excel_to_json(task_id: str) -> dict:
|
101 |
"""
|
102 |
-
|
103 |
-
Args:
|
104 |
-
task_id: An task ID to fetch.
|
105 |
-
|
106 |
-
Returns:
|
107 |
-
{
|
108 |
-
"task_id": str,
|
109 |
-
"sheets": {
|
110 |
-
"SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
|
111 |
-
...
|
112 |
-
},
|
113 |
-
"status": "Success" | "Error"
|
114 |
-
}
|
115 |
"""
|
116 |
-
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
117 |
-
|
118 |
try:
|
119 |
-
response = requests.get(
|
|
|
120 |
if response.status_code != 200:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
df = df.dropna(how="all")
|
129 |
-
rows = df.head(20).to_dict(orient="records")
|
130 |
-
json_sheets[sheet] = rows
|
131 |
-
|
132 |
-
return {
|
133 |
-
"task_id": task_id,
|
134 |
-
"sheets": json_sheets,
|
135 |
-
"status": "Success"
|
136 |
-
}
|
137 |
-
|
138 |
except Exception as e:
|
139 |
-
|
140 |
-
|
141 |
-
"sheets": {},
|
142 |
-
"status": f"Error in parsing Excel file: {str(e)}"
|
143 |
-
}
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
class VideoTranscriptionTool(Tool):
|
148 |
-
"""Fetch transcripts from YouTube videos"""
|
149 |
-
name = "transcript_video"
|
150 |
-
description = "Fetch text transcript from YouTube movies with optional timestamps"
|
151 |
-
inputs = {
|
152 |
-
"url": {"type": "string", "description": "YouTube video URL or ID"},
|
153 |
-
"include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True}
|
154 |
-
}
|
155 |
-
output_type = "string"
|
156 |
-
|
157 |
-
def forward(self, url: str, include_timestamps: bool = False) -> str:
|
158 |
-
|
159 |
-
if "youtube.com/watch" in url:
|
160 |
-
video_id = url.split("v=")[1].split("&")[0]
|
161 |
-
elif "youtu.be/" in url:
|
162 |
-
video_id = url.split("youtu.be/")[1].split("?")[0]
|
163 |
-
elif len(url.strip()) == 11: # Direct ID
|
164 |
-
video_id = url.strip()
|
165 |
-
else:
|
166 |
-
return f"YouTube URL or ID: {url} is invalid!"
|
167 |
-
|
168 |
-
try:
|
169 |
-
transcription = YouTubeTranscriptApi.get_transcript(video_id)
|
170 |
-
|
171 |
-
if include_timestamps:
|
172 |
-
formatted_transcription = []
|
173 |
-
for part in transcription:
|
174 |
-
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
|
175 |
-
formatted_transcription.append(f"[{timestamp}] {part['text']}")
|
176 |
-
return "\n".join(formatted_transcription)
|
177 |
-
else:
|
178 |
-
return " ".join([part['text'] for part in transcription])
|
179 |
-
|
180 |
-
except Exception as e:
|
181 |
-
return f"Error in extracting YouTube transcript: {str(e)}"
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
class BasicAgent:
|
184 |
def __init__(self):
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
return answer
|
274 |
|
275 |
-
|
276 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
277 |
"""
|
278 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
1 |
import os
|
2 |
+
from typing import Annotated, Optional, TypedDict
|
3 |
import gradio as gr
|
4 |
+
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage
|
5 |
+
from langchain_openai import ChatOpenAI
|
6 |
+
from langgraph.graph.message import add_messages
|
7 |
+
from langgraph.graph import StateGraph, START
|
8 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
9 |
import requests
|
|
|
10 |
import pandas as pd
|
11 |
+
from langchain.tools import Tool
|
12 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
from arxiv_searcher import ArxivSearcher
|
15 |
+
from chess_algebraic_notation_retriever import ChessAlgebraicNotationMoveRetriever
|
16 |
+
from excel_file_reader import ExcelFileReader
|
17 |
+
from image_question_answer_tool import ImageQuestionAnswerTool
|
18 |
+
from python_code_question_answer_tool import PythonCodeQuestionAnswerTool
|
19 |
+
from tavily_searcher import TavilySearcher
|
20 |
+
from transcriber import Transcriber
|
21 |
+
from wikipedia_searcher import WikipediaSearcher
|
22 |
+
from youtube_video_question_answer_tool import YoutubeVideoQuestionAnswerTool
|
23 |
|
|
|
24 |
load_dotenv()
|
25 |
|
26 |
+
# (Keep Constants as is)
|
27 |
+
# --- Constants ---
|
28 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
29 |
+
ASSOCIATED_FILE_ENDPOINT = f"{DEFAULT_API_URL}/files/"
|
30 |
|
31 |
+
# --- Basic Agent Definition ---
|
32 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
33 |
+
#search_tool = DuckDuckGoSearchRun()
|
34 |
|
35 |
+
#search_tool = DuckDuckGoSearcherTool()
|
36 |
|
37 |
+
def retrieve_task_file(task_id: str) -> Optional[bytes]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
+
Retrieve the task file for a given task ID.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
"""
|
|
|
|
|
41 |
try:
|
42 |
+
response = requests.get(ASSOCIATED_FILE_ENDPOINT + task_id, timeout=15)
|
43 |
+
response.raise_for_status()
|
44 |
if response.status_code != 200:
|
45 |
+
print(f"Error fetching file: {response.status_code}")
|
46 |
+
return None
|
47 |
+
#print(f"Fetched file: {response.content}")
|
48 |
+
return response.content
|
49 |
+
except requests.exceptions.RequestException as e:
|
50 |
+
print(f"Error fetching file: {e}")
|
51 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
+
print(f"An unexpected error occurred fetching file: {e}")
|
54 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
def retrieve_next_chess_move_in_algebraic_notation(task_file_path: str, is_black_turn: bool) -> str:
|
57 |
+
"""
|
58 |
+
Retrieve the next chess move in algebraic notation from an image path.
|
59 |
+
"""
|
60 |
+
if task_file_path is None:
|
61 |
+
return "Error: Task file not found."
|
62 |
+
# Retrieve the next chess move in algebraic notation
|
63 |
+
next_chess_move = ChessAlgebraicNotationMoveRetriever().retrieve(task_file_path, is_black_turn)
|
64 |
+
return next_chess_move
|
65 |
+
|
66 |
+
# Initialize the tool
|
67 |
+
retrieve_next_chess_move_in_algebraic_notation_tool = Tool(
|
68 |
+
name="retrieve_next_chess_move_in_algebraic_notation",
|
69 |
+
func=retrieve_next_chess_move_in_algebraic_notation,
|
70 |
+
description="Retrieve the next chess move in algebraic notation from an image path."
|
71 |
+
)
|
72 |
+
|
73 |
+
def transcribe_audio(file_path: str) -> str:
|
74 |
+
if file_path is None:
|
75 |
+
return "Error: Audio path not found."
|
76 |
+
# Transcribe the audio
|
77 |
+
return Transcriber().transcribe(file_path)
|
78 |
+
|
79 |
+
# Initialize the tool
|
80 |
+
transcribe_audio_tool = Tool(
|
81 |
+
name="transcribe_audio",
|
82 |
+
func=transcribe_audio,
|
83 |
+
description="Transcribe the audio from an audio path."
|
84 |
+
)
|
85 |
+
|
86 |
+
# Initialize the tool
|
87 |
+
answer_python_code_tool = PythonCodeQuestionAnswerTool()
|
88 |
+
|
89 |
+
# Initialize the tool
|
90 |
+
answer_image_question_tool = ImageQuestionAnswerTool()
|
91 |
+
|
92 |
+
# Initialize the tool
|
93 |
+
answer_youtube_video_question_tool = YoutubeVideoQuestionAnswerTool()
|
94 |
+
|
95 |
+
'''def answer_youtube_video_question(youtube_video_url: str, question: str) -> str:
|
96 |
+
"""
|
97 |
+
Answer the question based on the youtube video.
|
98 |
+
"""
|
99 |
+
if youtube_video_url is None:
|
100 |
+
return "Error: Video not found."
|
101 |
+
# Download the video
|
102 |
+
video_path = YoutubeVideoDownloader().download_video(youtube_video_url)
|
103 |
+
# Answer the question
|
104 |
+
return VideoQuestionAnswer().answer(video_path, question)
|
105 |
+
# Initialize the tool
|
106 |
+
answer_youtube_video_question_tool = Tool(
|
107 |
+
name="answer_youtube_video_question",
|
108 |
+
func=answer_youtube_video_question,
|
109 |
+
description="Answer the question based on the youtube video."
|
110 |
+
)'''
|
111 |
+
|
112 |
+
def read_excel_file(file_path: str) -> str:
|
113 |
+
if file_path is None:
|
114 |
+
return "Error: File not found."
|
115 |
+
return ExcelFileReader().read_file(file_path)
|
116 |
+
|
117 |
+
# Initialize the tool
|
118 |
+
read_excel_file_tool = Tool(
|
119 |
+
name="read_excel_file",
|
120 |
+
func=read_excel_file,
|
121 |
+
description="Read the excel file."
|
122 |
+
)
|
123 |
+
|
124 |
+
# Initialize the tool
|
125 |
+
wikipedia_search_tool = Tool(
|
126 |
+
name="wikipedia_search",
|
127 |
+
func=WikipediaSearcher().search,
|
128 |
+
description="Search Wikipedia for a given query."
|
129 |
+
)
|
130 |
+
|
131 |
+
# Initialize the tool
|
132 |
+
arxiv_search_tool = Tool(
|
133 |
+
name="arxiv_search",
|
134 |
+
func=ArxivSearcher().search,
|
135 |
+
description="Search Arxiv for a given query."
|
136 |
+
)
|
137 |
+
|
138 |
+
tavily_search_tool = Tool(
|
139 |
+
name="tavily_search",
|
140 |
+
func=TavilySearcher().search,
|
141 |
+
description="Search the web for a given query."
|
142 |
+
)
|
143 |
+
|
144 |
+
def format_gaia_answer(answer: str) -> str:
|
145 |
+
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
146 |
+
prompt = f"""
|
147 |
+
You are formatting answers for the GAIA benchmark, which requires responses to be concise and unambiguous.
|
148 |
+
Given the answer: {answer}
|
149 |
+
Return the answer in the correct GAIA format:
|
150 |
+
- If the answer is a single word or number, return it without any additional text or formatting.
|
151 |
+
- If the answer is a list, return a comma-separated list without any additional text or formatting.
|
152 |
+
- If the answer is a string, return it without any additional text or formatting.
|
153 |
+
Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
|
154 |
+
Do not include any additional text or formatting.
|
155 |
+
"""
|
156 |
+
response = llm.invoke(prompt)
|
157 |
+
# Delete double quotes
|
158 |
+
return response.content.strip().replace('"', '')
|
159 |
+
|
160 |
+
class AgentState(TypedDict):
|
161 |
+
# The document provided
|
162 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
163 |
+
file_path: Optional[str]
|
164 |
+
|
165 |
class BasicAgent:
|
166 |
def __init__(self):
|
167 |
+
tools = [
|
168 |
+
tavily_search_tool,
|
169 |
+
arxiv_search_tool,
|
170 |
+
wikipedia_search_tool,
|
171 |
+
transcribe_audio_tool,
|
172 |
+
answer_python_code_tool,
|
173 |
+
answer_image_question_tool,
|
174 |
+
answer_youtube_video_question_tool,
|
175 |
+
read_excel_file_tool
|
176 |
+
]
|
177 |
+
'''llm = ChatGoogleGenerativeAI(
|
178 |
+
model="gemini-2.0-flash",
|
179 |
+
temperature=0.2,
|
180 |
+
api_key=os.getenv("GEMINI_API_KEY")
|
181 |
+
)'''
|
182 |
+
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
183 |
+
self.llm_with_tools = llm.bind_tools(tools)
|
184 |
+
builder = StateGraph(AgentState)
|
185 |
+
|
186 |
+
# Define nodes: these do the work
|
187 |
+
builder.add_node("assistant", self.assistant)
|
188 |
+
builder.add_node("tools", ToolNode(tools))
|
189 |
+
|
190 |
+
# Define edges: these determine how the control flow moves
|
191 |
+
builder.add_edge(START, "assistant")
|
192 |
+
builder.add_conditional_edges(
|
193 |
+
"assistant",
|
194 |
+
# If the latest message requires a tool, route to tools
|
195 |
+
# Otherwise, provide a direct response
|
196 |
+
tools_condition,
|
197 |
)
|
198 |
+
builder.add_edge("tools", "assistant")
|
199 |
+
self.agent = builder.compile()
|
200 |
+
|
201 |
+
print("BasicAgent initialized.")
|
202 |
+
|
203 |
+
def assistant(self, state: AgentState):
|
204 |
+
# System message
|
205 |
+
textual_description_of_tools="""
|
206 |
+
tavily_search(query: str) -> str:
|
207 |
+
Search the web for a given query.
|
208 |
+
Args:
|
209 |
+
query: Query to search the web for (string).
|
210 |
+
Returns:
|
211 |
+
A single string containing the information found on the web.
|
212 |
+
arxiv_search(query: str) -> str:
|
213 |
+
Search Arxiv, that contains scientific papers, for a given query.
|
214 |
+
Args:
|
215 |
+
query: Query to search Arxiv for (string).
|
216 |
+
Returns:
|
217 |
+
A single string containing the answer to the question.
|
218 |
+
wikipedia_search(query: str) -> str:
|
219 |
+
Search Wikipedia for a given query.
|
220 |
+
Args:
|
221 |
+
query: Query to search Wikipedia for (string).
|
222 |
+
Returns:
|
223 |
+
A single string containing the answer to the question.
|
224 |
+
transcribe_audio(file_path: str) -> str:
|
225 |
+
Transcribe the audio from an audio path.
|
226 |
+
Args:
|
227 |
+
file_path: File path of the audio file (string).
|
228 |
+
Returns:
|
229 |
+
A single string containing the transcribed text from the audio.
|
230 |
+
|
231 |
+
answer_python_code(file_path: str, question: str) -> str:
|
232 |
+
Answer the question based on the python code.
|
233 |
+
Args:
|
234 |
+
file_path: File path of the python file (string).
|
235 |
+
question: Question to answer (string).
|
236 |
+
Returns:
|
237 |
+
A single string containing the answer to the question.
|
238 |
+
|
239 |
+
answer_image_question(file_path: str, question: str) -> str:
|
240 |
+
Answer the question based on the image.
|
241 |
+
Args:
|
242 |
+
file_path: File path of the image (string).
|
243 |
+
question: Question to answer (string).
|
244 |
+
Returns:
|
245 |
+
A single string containing the answer to the question.
|
246 |
+
|
247 |
+
download_youtube_video(youtube_video_url: str) -> str:
|
248 |
+
Download the Youtube video into a local file based on the URL
|
249 |
+
Args:
|
250 |
+
youtube_video_url: A youtube video url (string).
|
251 |
+
Returns:
|
252 |
+
A single string containing the file path of the downloaded youtube video.
|
253 |
+
answer_youtube_video_question(file_path: str, question: str) -> str:
|
254 |
+
Answer the question based on file path of the downloaded youtube video
|
255 |
+
Args:
|
256 |
+
file_path: File path of the downloaded youtube video (string).
|
257 |
+
question: Question to answer (string).
|
258 |
+
Returns:
|
259 |
+
A single string containing the answer to the question.
|
260 |
+
|
261 |
+
read_excel_file(file_path: str) -> str:
|
262 |
+
Read the excel file.
|
263 |
+
Args:
|
264 |
+
file_path: File path of the excel file (string).
|
265 |
+
Returns:
|
266 |
+
A markdown formatted string containing the contents of the excel file.
|
267 |
+
"""
|
268 |
+
file_path=state["file_path"]
|
269 |
+
prompt = f"""
|
270 |
+
You are a helpful assistant that can analyse images, videos, excel files and Python scripts and run computations with provided tools:
|
271 |
+
{textual_description_of_tools}
|
272 |
+
You have access to the file path of the attached file in case it's informed. Currently the file path is: {file_path}
|
273 |
+
Be direct and specific. GAIA benchmark requires exact matching answers.
|
274 |
+
For example, if asked "What is the capital of France?", respond simply with "Paris".
|
275 |
+
Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
|
276 |
+
Do not include any additional text or formatting.
|
277 |
+
If you are required a number, return a number, not the items.
|
278 |
+
"""
|
279 |
+
sys_msg = SystemMessage(content=prompt)
|
280 |
|
281 |
+
return {
|
282 |
+
"messages": [self.llm_with_tools.invoke([sys_msg] + state["messages"], config={"configurable": {"file_path": state["file_path"]}})],
|
283 |
+
"file_path": state["file_path"]
|
284 |
+
}
|
285 |
+
'''return {
|
286 |
+
"messages": [self.llm_with_tools.invoke(
|
287 |
+
state["messages"],
|
288 |
+
config={"configurable": {"file_path": state["file_path"]}} # Aquí pasas el task_id
|
289 |
+
)],
|
290 |
+
"file_path": state["file_path"]
|
291 |
+
}'''
|
292 |
+
|
293 |
+
def __call__(self, question: str, task_id: str, file_name: str) -> str:
|
294 |
+
print(f"######################### Agent received question (first 50 chars): {question[:50]}... with file_name: {file_name}")
|
295 |
+
|
296 |
+
# Get the file path
|
297 |
+
tmp_file_path = None
|
298 |
+
if file_name is not None and file_name != "":
|
299 |
+
file_content = retrieve_task_file(task_id)
|
300 |
+
if file_content is not None:
|
301 |
+
print(f"Saving file {file_name} to tmp folder")
|
302 |
+
tmp_file_path = f"tmp/{file_name}"
|
303 |
+
with open(tmp_file_path, "wb") as f:
|
304 |
+
f.write(file_content)
|
305 |
+
# Show the file path
|
306 |
+
print(f"File path: {tmp_file_path}")
|
307 |
+
|
308 |
+
messages = self.agent.invoke({"messages": [HumanMessage(question)], "file_path": tmp_file_path})
|
309 |
+
# Show the messages
|
310 |
+
for m in messages['messages']:
|
311 |
+
m.pretty_print()
|
312 |
+
answer = messages["messages"][-1].content
|
313 |
+
answer = format_gaia_answer(answer)
|
314 |
+
print(f"######################### Agent returning answer: {answer}\n")
|
315 |
+
# Delete the file
|
316 |
+
if tmp_file_path is not None:
|
317 |
+
os.remove(tmp_file_path)
|
318 |
return answer
|
319 |
|
|
|
320 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
321 |
"""
|
322 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|