wt002 commited on
Commit
3533530
·
verified ·
1 Parent(s): 6ed8456

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +18 -4
agent.py CHANGED
@@ -122,16 +122,30 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
122
  # System message
123
  sys_msg = SystemMessage(content=system_prompt)
124
 
125
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"max_length": 2048}) # dim=768
 
 
 
 
 
 
 
 
 
126
  supabase: Client = create_client(
127
- os.environ.get("SUPABASE_URL"),
128
- os.environ.get("SUPABASE_SERVICE_KEY"))
 
 
 
129
  vector_store = SupabaseVectorStore(
130
  client=supabase,
131
- embedding= embeddings,
132
  table_name="documents",
133
  query_name="match_documents_langchain",
134
  )
 
 
135
  create_retriever_tool = create_retriever_tool(
136
  retriever=vector_store.as_retriever(),
137
  name="Question Search",
 
122
  # System message
123
  sys_msg = SystemMessage(content=system_prompt)
124
 
125
+ # Initialize SentenceTransformer with max_seq_length
126
+ sentence_transformer = SentenceTransformer(
127
+ "sentence-transformers/all-mpnet-base-v2",
128
+ max_seq_length=2048 # Set max sequence length here
129
+ )
130
+
131
+ # Initialize embeddings with the custom SentenceTransformer model
132
+ embeddings = HuggingFaceEmbeddings(model=sentence_transformer)
133
+
134
+ # Initialize Supabase client
135
  supabase: Client = create_client(
136
+ os.environ.get("SUPABASE_URL"),
137
+ os.environ.get("SUPABASE_SERVICE_KEY")
138
+ )
139
+
140
+ # Create vector store
141
  vector_store = SupabaseVectorStore(
142
  client=supabase,
143
+ embedding=embeddings,
144
  table_name="documents",
145
  query_name="match_documents_langchain",
146
  )
147
+
148
+ # Create retriever tool
149
  create_retriever_tool = create_retriever_tool(
150
  retriever=vector_store.as_retriever(),
151
  name="Question Search",