Spaces:
Running
Running
Update agent.py
Browse files
agent.py
CHANGED
@@ -340,79 +340,34 @@ for name in enabled_tool_names:
|
|
340 |
|
341 |
|
342 |
# -------------------------------
|
343 |
-
#
|
344 |
-
# -------------------------------
|
345 |
-
from fastapi import FastAPI, Request
|
346 |
-
from langchain_core.documents import Document
|
347 |
-
import uuid
|
348 |
-
|
349 |
-
app = FastAPI()
|
350 |
-
|
351 |
-
@app.post("/start")
|
352 |
-
async def start_questions(request: Request):
|
353 |
-
data = await request.json()
|
354 |
-
questions = data.get("questions", [])
|
355 |
-
|
356 |
-
docs = []
|
357 |
-
for task in questions:
|
358 |
-
question_text = task.get("question", "").strip()
|
359 |
-
if not question_text:
|
360 |
-
continue
|
361 |
-
|
362 |
-
task["id"] = str(uuid.uuid4())
|
363 |
-
docs.append(Document(page_content=question_text, metadata=task))
|
364 |
-
|
365 |
-
return {"message": f"Loaded {len(docs)} questions", "docs": [doc.page_content for doc in docs]}
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
# -------------------------------
|
371 |
-
# Step 4: Set up BERT Embeddings and FAISS VectorStore
|
372 |
# -------------------------------
|
373 |
|
374 |
# -----------------------------
|
375 |
-
#
|
376 |
# -----------------------------
|
377 |
import torch
|
378 |
import torch.nn.functional as F
|
379 |
from transformers import BertTokenizer, BertModel
|
380 |
-
from langchain.embeddings import Embeddings
|
381 |
|
382 |
-
class BERTEmbeddings
|
383 |
-
def __init__(self, model_name='bert-base-uncased'
|
384 |
-
# Initialize the tokenizer and model
|
385 |
self.tokenizer = BertTokenizer.from_pretrained(model_name)
|
386 |
self.model = BertModel.from_pretrained(model_name)
|
387 |
-
self.model.eval() # Set
|
388 |
-
self.device = device
|
389 |
-
self.model.to(self.device) # Move model to the specified device (CPU or GPU)
|
390 |
|
391 |
def embed_documents(self, texts):
|
392 |
-
|
393 |
-
inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
394 |
-
inputs = {key: value.to(self.device) for key, value in inputs.items()} # Move inputs to the specified device
|
395 |
-
|
396 |
with torch.no_grad():
|
397 |
outputs = self.model(**inputs)
|
398 |
-
|
399 |
-
# Get the embeddings by averaging the last hidden state across tokens
|
400 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
401 |
-
|
402 |
-
# Normalize embeddings for cosine similarity
|
403 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
404 |
-
|
405 |
-
# Return the embeddings as numpy array
|
406 |
return embeddings.cpu().numpy()
|
407 |
|
408 |
def embed_query(self, text):
|
409 |
-
# Embed a single query (text)
|
410 |
return self.embed_documents([text])[0]
|
411 |
|
412 |
|
413 |
-
# -----------------------------
|
414 |
-
# 2. Initialize Embedding Model
|
415 |
-
# -----------------------------
|
416 |
|
417 |
# -----------------------------
|
418 |
# Create FAISS Vector Store
|
@@ -434,7 +389,7 @@ class MyVectorStore:
|
|
434 |
return cls(index)
|
435 |
|
436 |
# -----------------------------
|
437 |
-
#
|
438 |
# -----------------------------
|
439 |
# Define the URL where the JSON file is hosted
|
440 |
url = "https://agents-course-unit4-scoring.hf.space/questions"
|
@@ -467,11 +422,8 @@ loaded_vector_store = MyVectorStore.load_local("faiss_index.index")
|
|
467 |
|
468 |
|
469 |
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
# -----------------------------
|
474 |
-
#
|
475 |
# -----------------------------
|
476 |
|
477 |
retriever = FAISS.load_local("faiss_index.index", embedding_model).as_retriever()
|
@@ -502,17 +454,6 @@ llm = HuggingFaceEndpoint(
|
|
502 |
)
|
503 |
|
504 |
|
505 |
-
# No longer required as Langgraph is replacing Langchain
|
506 |
-
# Initialize LangChain agent
|
507 |
-
#agent = initialize_agent(
|
508 |
-
# tools=tools,
|
509 |
-
# llm=llm,
|
510 |
-
# agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
511 |
-
# verbose=True
|
512 |
-
#)
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
|
517 |
# -------------------------------
|
518 |
# Step 8: Use the Planner, Classifier, and Decision Logic
|
|
|
340 |
|
341 |
|
342 |
# -------------------------------
|
343 |
+
# Set up BERT Embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
# -------------------------------
|
345 |
|
346 |
# -----------------------------
|
347 |
+
# Define Custom BERT Embedding Model
|
348 |
# -----------------------------
|
349 |
import torch
|
350 |
import torch.nn.functional as F
|
351 |
from transformers import BertTokenizer, BertModel
|
|
|
352 |
|
353 |
+
class BERTEmbeddings:
|
354 |
+
def __init__(self, model_name='bert-base-uncased'):
|
|
|
355 |
self.tokenizer = BertTokenizer.from_pretrained(model_name)
|
356 |
self.model = BertModel.from_pretrained(model_name)
|
357 |
+
self.model.eval() # Set to evaluation mode
|
|
|
|
|
358 |
|
359 |
def embed_documents(self, texts):
|
360 |
+
inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
|
|
|
|
|
|
361 |
with torch.no_grad():
|
362 |
outputs = self.model(**inputs)
|
|
|
|
|
363 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
364 |
+
embeddings = F.normalize(embeddings, p=2, dim=1) # Normalize for cosine similarity
|
|
|
|
|
|
|
|
|
365 |
return embeddings.cpu().numpy()
|
366 |
|
367 |
def embed_query(self, text):
|
|
|
368 |
return self.embed_documents([text])[0]
|
369 |
|
370 |
|
|
|
|
|
|
|
371 |
|
372 |
# -----------------------------
|
373 |
# Create FAISS Vector Store
|
|
|
389 |
return cls(index)
|
390 |
|
391 |
# -----------------------------
|
392 |
+
# Prepare Documents
|
393 |
# -----------------------------
|
394 |
# Define the URL where the JSON file is hosted
|
395 |
url = "https://agents-course-unit4-scoring.hf.space/questions"
|
|
|
422 |
|
423 |
|
424 |
|
|
|
|
|
|
|
425 |
# -----------------------------
|
426 |
+
# Create LangChain Retriever Tool
|
427 |
# -----------------------------
|
428 |
|
429 |
retriever = FAISS.load_local("faiss_index.index", embedding_model).as_retriever()
|
|
|
454 |
)
|
455 |
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
# -------------------------------
|
459 |
# Step 8: Use the Planner, Classifier, and Decision Logic
|