wt002 commited on
Commit
45e2eff
·
verified ·
1 Parent(s): b2477bc

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +12 -19
agent.py CHANGED
@@ -15,8 +15,12 @@ from langchain_core.tools import tool
15
  from langchain.tools.retriever import create_retriever_tool
16
  from supabase.client import Client, create_client
17
  from typing import TypedDict, List, Annotated
18
- from langchain.vectorstores.chroma import Chroma
19
  from langchain.agents.agent_toolkits import create_retriever_tool
 
 
 
 
 
20
 
21
  load_dotenv()
22
 
@@ -124,25 +128,14 @@ sys_msg = SystemMessage(content=system_prompt)
124
 
125
 
126
  def create_retriever_tool(persist_directory="vector_store"):
127
- # Initialize embeddings
128
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #dim=768
129
-
130
- # Create/load Chroma vector store - must use same parameter name as in your function
131
- vector_store = Chroma(
132
- embedding_function=embeddings,
133
- persist_directory=persist_directory # Use the parameter, not hardcoded path
134
- )
135
 
136
- # Create retriever tool
137
- retriever_tool = create_retriever_tool(
138
- retriever=vector_store.as_retriever(),
139
- name="Question Search",
140
- description="A tool to retrieve similar questions from a vector store.",
141
- )
142
-
143
- return retriever_tool, vector_store
144
-
145
- tool, store = create_retriever_tool(persist_directory="/home/wendy/Downloads")
146
 
147
  tools = [
148
  multiply,
 
15
  from langchain.tools.retriever import create_retriever_tool
16
  from supabase.client import Client, create_client
17
  from typing import TypedDict, List, Annotated
 
18
  from langchain.agents.agent_toolkits import create_retriever_tool
19
+ from langchain_community.document_loaders import TextLoader
20
+ from langchain_community.vectorstores import FAISS
21
+ from langchain_openai import OpenAIEmbeddings
22
+ from langchain_text_splitters import CharacterTextSplitter
23
+
24
 
25
  load_dotenv()
26
 
 
128
 
129
 
130
  def create_retriever_tool(persist_directory="vector_store"):
131
+ documents = TextLoader("state_of_the_union.txt").load()
132
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
133
+ texts = text_splitter.split_documents(documents)
134
+ retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever()
 
 
 
 
135
 
136
+ #docs = retriever.invoke("What did the president say about Ketanji Brown Jackson")
137
+ #pretty_print_docs(docs)
138
+
 
 
 
 
 
 
 
139
 
140
  tools = [
141
  multiply,