Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,43 +24,39 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
24 |
load_dotenv()
|
25 |
|
26 |
import os
|
27 |
-
import io
|
28 |
-
import contextlib
|
29 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
30 |
-
from smolagents import Tool
|
31 |
|
32 |
-
class
|
33 |
-
name = "
|
34 |
-
description = "Uses
|
35 |
-
|
36 |
-
inputs = {
|
37 |
-
"question": {
|
38 |
-
"type": "string",
|
39 |
-
"description": "The user's question involving reasoning or code execution."
|
40 |
-
}
|
41 |
-
}
|
42 |
-
output_type = "string"
|
43 |
|
44 |
def __init__(self):
|
45 |
-
self.model_id = "
|
46 |
-
token = os.getenv("HF_TOKEN")
|
47 |
|
48 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token)
|
49 |
self.model = AutoModelForCausalLM.from_pretrained(
|
50 |
-
self.model_id,
|
51 |
-
device_map="auto",
|
52 |
-
torch_dtype="auto",
|
53 |
-
token=token
|
54 |
)
|
|
|
55 |
self.pipeline = pipeline(
|
56 |
"text-generation",
|
57 |
model=self.model,
|
58 |
tokenizer=self.tokenizer,
|
59 |
-
max_new_tokens=
|
60 |
temperature=0.2
|
61 |
)
|
62 |
|
63 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
prompt = f"""You are a helpful assistant. Use code to solve questions that involve calculations.
|
65 |
If code is needed, return a block like <tool>code</tool>. End your answer with <final>answer</final>.
|
66 |
|
@@ -69,9 +65,11 @@ Answer:"""
|
|
69 |
|
70 |
result = self.pipeline(prompt)[0]["generated_text"]
|
71 |
|
|
|
72 |
if "<tool>" in result and "</tool>" in result:
|
73 |
code = result.split("<tool>")[1].split("</tool>")[0].strip()
|
74 |
-
|
|
|
75 |
|
76 |
elif "<final>" in result and "</final>" in result:
|
77 |
final = result.split("<final>")[1].split("</final>")[0].strip()
|
@@ -79,15 +77,6 @@ Answer:"""
|
|
79 |
|
80 |
return "Could not determine how to respond. No <tool> or <final> block detected."
|
81 |
|
82 |
-
def _run_code(self, code: str) -> str:
|
83 |
-
buffer = io.StringIO()
|
84 |
-
try:
|
85 |
-
with contextlib.redirect_stdout(buffer):
|
86 |
-
exec(code, {})
|
87 |
-
return f"FINAL ANSWER (code output): {buffer.getvalue().strip()}"
|
88 |
-
except Exception as e:
|
89 |
-
return f"Error during code execution: {e}"
|
90 |
-
|
91 |
|
92 |
#from smolagents import Tool
|
93 |
#from langchain_community.document_loaders import WikipediaLoader
|
@@ -262,7 +251,7 @@ class BasicAgent:
|
|
262 |
video_transcription_tool = VideoTranscriptionTool()
|
263 |
|
264 |
# ✅ New Mistral-based Tool
|
265 |
-
|
266 |
|
267 |
system_prompt = f"""
|
268 |
You are my general AI assistant. Your task is to answer the question I asked.
|
@@ -281,7 +270,7 @@ If the answer is a comma-separated list, apply the above rules for each element
|
|
281 |
keywords_extract_tool, speech_to_text_tool,
|
282 |
visit_webpage_tool, final_answer_tool,
|
283 |
parse_excel_to_json, video_transcription_tool,
|
284 |
-
|
285 |
],
|
286 |
add_base_tools=True
|
287 |
)
|
|
|
24 |
load_dotenv()
|
25 |
|
26 |
import os
|
|
|
|
|
27 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
28 |
|
29 |
+
class CodeLlamaToolCallingAgentTool:
|
30 |
+
name = "code_llama_tool_agent"
|
31 |
+
description = "Uses Code Llama to answer questions using code or reasoning"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def __init__(self):
|
34 |
+
self.model_id = "meta/code-llama-7b-instruct"
|
35 |
+
token = os.getenv("HF_TOKEN") # Optional unless private
|
36 |
|
37 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=token)
|
38 |
self.model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
self.model_id, device_map="auto", torch_dtype="auto", token=token
|
|
|
|
|
|
|
40 |
)
|
41 |
+
|
42 |
self.pipeline = pipeline(
|
43 |
"text-generation",
|
44 |
model=self.model,
|
45 |
tokenizer=self.tokenizer,
|
46 |
+
max_new_tokens=512,
|
47 |
temperature=0.2
|
48 |
)
|
49 |
|
50 |
+
def _run_code(self, code: str) -> str:
|
51 |
+
buffer = io.StringIO()
|
52 |
+
try:
|
53 |
+
with contextlib.redirect_stdout(buffer):
|
54 |
+
exec(code, {})
|
55 |
+
return buffer.getvalue().strip()
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error during code execution: {e}"
|
58 |
+
|
59 |
+
def run(self, question: str) -> str:
|
60 |
prompt = f"""You are a helpful assistant. Use code to solve questions that involve calculations.
|
61 |
If code is needed, return a block like <tool>code</tool>. End your answer with <final>answer</final>.
|
62 |
|
|
|
65 |
|
66 |
result = self.pipeline(prompt)[0]["generated_text"]
|
67 |
|
68 |
+
# Process result
|
69 |
if "<tool>" in result and "</tool>" in result:
|
70 |
code = result.split("<tool>")[1].split("</tool>")[0].strip()
|
71 |
+
output = self._run_code(code)
|
72 |
+
return f"FINAL ANSWER (code output): {output}"
|
73 |
|
74 |
elif "<final>" in result and "</final>" in result:
|
75 |
final = result.split("<final>")[1].split("</final>")[0].strip()
|
|
|
77 |
|
78 |
return "Could not determine how to respond. No <tool> or <final> block detected."
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
#from smolagents import Tool
|
82 |
#from langchain_community.document_loaders import WikipediaLoader
|
|
|
251 |
video_transcription_tool = VideoTranscriptionTool()
|
252 |
|
253 |
# ✅ New Mistral-based Tool
|
254 |
+
my_tool = CodeLlamaToolCallingAgentTool()
|
255 |
|
256 |
system_prompt = f"""
|
257 |
You are my general AI assistant. Your task is to answer the question I asked.
|
|
|
270 |
keywords_extract_tool, speech_to_text_tool,
|
271 |
visit_webpage_tool, final_answer_tool,
|
272 |
parse_excel_to_json, video_transcription_tool,
|
273 |
+
my_tool # 🔧 Add here
|
274 |
],
|
275 |
add_base_tools=True
|
276 |
)
|