Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,11 +7,12 @@ from typing import List, Dict, Union, Optional
|
|
| 7 |
import pandas as pd
|
| 8 |
import wikipediaapi
|
| 9 |
import requests
|
| 10 |
-
from bs4 import BeautifulSoup
|
| 11 |
import random
|
| 12 |
import re
|
| 13 |
from typing import Optional
|
| 14 |
from datetime import datetime
|
|
|
|
| 15 |
|
| 16 |
load_dotenv()
|
| 17 |
|
|
@@ -22,65 +23,125 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
| 22 |
|
| 23 |
# --- Basic Agent Definition ---
|
| 24 |
|
| 25 |
-
import requests
|
| 26 |
-
from bs4 import BeautifulSoup
|
| 27 |
-
|
| 28 |
class BasicAgent:
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
print("BasicAgent initialized.")
|
| 31 |
|
| 32 |
-
|
| 33 |
-
print(f"Agent received question: {question[:50]}...")
|
| 34 |
-
|
| 35 |
-
print(f"
|
| 36 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
# Search parameters
|
| 51 |
-
params = {
|
| 52 |
-
'q': query,
|
| 53 |
-
'kl': 'us-en'
|
| 54 |
-
}
|
| 55 |
-
|
| 56 |
-
# Make the POST request
|
| 57 |
-
response = requests.post(url, headers=headers, data=params)
|
| 58 |
-
response.raise_for_status() # Raise exception for bad status codes
|
| 59 |
-
|
| 60 |
-
# Parse the HTML response
|
| 61 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
| 62 |
-
|
| 63 |
-
# Find all search results
|
| 64 |
-
results = soup.find_all('div', class_='result')
|
| 65 |
-
|
| 66 |
-
if not results:
|
| 67 |
-
return "No results found for your query."
|
| 68 |
-
|
| 69 |
-
# Prepare the answer with top 3 results
|
| 70 |
-
answer = "Here are the top search results:\n\n"
|
| 71 |
-
for i, result in enumerate(results[:3], 1): # Limit to 3 results
|
| 72 |
-
title = result.find('a', class_='result__a').get_text(strip=True)
|
| 73 |
-
link = result.find('a', class_='result__a')['href']
|
| 74 |
-
snippet = result.find('a', class_='result__snippet').get_text(strip=True) if result.find('a', class_='result__snippet') else "No description available"
|
| 75 |
-
|
| 76 |
-
answer += f"{i}. {title}\n URL: {link}\n Description: {snippet}\n\n"
|
| 77 |
-
|
| 78 |
-
return answer
|
| 79 |
-
|
| 80 |
-
except requests.exceptions.RequestException as e:
|
| 81 |
-
return f"Failed to complete the search request: {str(e)}"
|
| 82 |
except Exception as e:
|
| 83 |
-
return f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
import wikipediaapi
|
| 9 |
import requests
|
| 10 |
+
#from bs4 import BeautifulSoup
|
| 11 |
import random
|
| 12 |
import re
|
| 13 |
from typing import Optional
|
| 14 |
from datetime import datetime
|
| 15 |
+
import google.generativeai as genai
|
| 16 |
|
| 17 |
load_dotenv()
|
| 18 |
|
|
|
|
| 23 |
|
| 24 |
# --- Basic Agent Definition ---
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
class BasicAgent:
|
| 27 |
+
def __init__(self, model_name: str = "gemini-pro"):
|
| 28 |
+
"""
|
| 29 |
+
Multi-modal agent powered by Google Gemini with:
|
| 30 |
+
- Web search
|
| 31 |
+
- Wikipedia access
|
| 32 |
+
- Document processing
|
| 33 |
+
"""
|
| 34 |
+
self.model = genai.GenerativeModel(model_name)
|
| 35 |
+
self.wiki = wikipediaapi.Wikipedia('en')
|
| 36 |
+
self.searx_url = "https://searx.space/search" # Public Searx instance
|
| 37 |
+
|
| 38 |
print("BasicAgent initialized.")
|
| 39 |
|
| 40 |
+
def __call__(self, question: str) -> str:
|
| 41 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 42 |
+
fixed_answer = self.process_request(question)
|
| 43 |
+
print(f"Agent returning answer: {fixed_answer}")
|
| 44 |
+
return fixed_answer
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def generate_response(self, prompt: str) -> str:
|
| 49 |
+
"""Get response from Gemini"""
|
| 50 |
+
try:
|
| 51 |
+
response = self.model.generate_content(prompt)
|
| 52 |
+
return response.text
|
| 53 |
+
except Exception as e:
|
| 54 |
+
return f"Error generating response: {str(e)}"
|
| 55 |
+
|
| 56 |
+
def web_search(self, query: str) -> List[Dict]:
|
| 57 |
+
"""Use SearxNG meta-search engine"""
|
| 58 |
+
params = {
|
| 59 |
+
"q": query,
|
| 60 |
+
"format": "json",
|
| 61 |
+
"engines": "google,bing,duckduckgo"
|
| 62 |
+
}
|
| 63 |
+
try:
|
| 64 |
+
response = requests.get(self.searx_url, params=params)
|
| 65 |
+
response.raise_for_status()
|
| 66 |
+
return response.json().get("results", [])
|
| 67 |
+
except requests.RequestException:
|
| 68 |
+
return []
|
| 69 |
+
|
| 70 |
+
def wikipedia_search(self, query: str) -> str:
|
| 71 |
+
"""Get Wikipedia summary"""
|
| 72 |
+
page = self.wiki.page(query)
|
| 73 |
+
return page.summary if page.exists() else "No Wikipedia page found"
|
| 74 |
|
| 75 |
+
def process_document(self, file_path: str) -> str:
|
| 76 |
+
"""Handle PDF, Word, CSV, Excel files"""
|
| 77 |
+
if not os.path.exists(file_path):
|
| 78 |
+
return "File not found"
|
| 79 |
+
|
| 80 |
+
ext = os.path.splitext(file_path)[1].lower()
|
| 81 |
+
|
| 82 |
try:
|
| 83 |
+
if ext == '.pdf':
|
| 84 |
+
return self._process_pdf(file_path)
|
| 85 |
+
elif ext in ('.doc', '.docx'):
|
| 86 |
+
return self._process_word(file_path)
|
| 87 |
+
elif ext == '.csv':
|
| 88 |
+
return pd.read_csv(file_path).to_string()
|
| 89 |
+
elif ext in ('.xls', '.xlsx'):
|
| 90 |
+
return pd.read_excel(file_path).to_string()
|
| 91 |
+
else:
|
| 92 |
+
return "Unsupported file format"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
except Exception as e:
|
| 94 |
+
return f"Error processing document: {str(e)}"
|
| 95 |
+
|
| 96 |
+
def _process_pdf(self, file_path: str) -> str:
|
| 97 |
+
"""Process PDF using Gemini's vision capability"""
|
| 98 |
+
try:
|
| 99 |
+
# For Gemini 1.5 or later which supports file uploads
|
| 100 |
+
with open(file_path, "rb") as f:
|
| 101 |
+
file = genai.upload_file(f)
|
| 102 |
+
response = self.model.generate_content(
|
| 103 |
+
["Extract and summarize the key points from this document:", file]
|
| 104 |
+
)
|
| 105 |
+
return response.text
|
| 106 |
+
except:
|
| 107 |
+
# Fallback for older Gemini versions
|
| 108 |
+
try:
|
| 109 |
+
import PyPDF2
|
| 110 |
+
with open(file_path, 'rb') as f:
|
| 111 |
+
reader = PyPDF2.PdfReader(f)
|
| 112 |
+
return "\n".join([page.extract_text() for page in reader.pages])
|
| 113 |
+
except ImportError:
|
| 114 |
+
return "PDF processing requires PyPDF2 (pip install PyPDF2)"
|
| 115 |
+
|
| 116 |
+
def _process_word(self, file_path: str) -> str:
|
| 117 |
+
"""Process Word documents"""
|
| 118 |
+
try:
|
| 119 |
+
from docx import Document
|
| 120 |
+
doc = Document(file_path)
|
| 121 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
| 122 |
+
except ImportError:
|
| 123 |
+
return "Word processing requires python-docx (pip install python-docx)"
|
| 124 |
+
|
| 125 |
+
def process_request(self, request: Union[str, Dict]) -> str:
|
| 126 |
+
"""
|
| 127 |
+
Handle different request types:
|
| 128 |
+
- Direct text queries
|
| 129 |
+
- File processing requests
|
| 130 |
+
- Complex multi-step requests
|
| 131 |
+
"""
|
| 132 |
+
if isinstance(request, dict):
|
| 133 |
+
if 'steps' in request:
|
| 134 |
+
results = []
|
| 135 |
+
for step in request['steps']:
|
| 136 |
+
if step['type'] == 'search':
|
| 137 |
+
results.append(self.web_search(step['query']))
|
| 138 |
+
elif step['type'] == 'process':
|
| 139 |
+
results.append(self.process_document(step['file']))
|
| 140 |
+
return self.generate_response(f"Process these results: {results}")
|
| 141 |
+
return "Unsupported request format"
|
| 142 |
+
|
| 143 |
+
return self.generate_response(request)
|
| 144 |
+
|
| 145 |
|
| 146 |
|
| 147 |
|