Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,210 +1,223 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
-
from smolagents import
|
6 |
-
|
7 |
-
import
|
8 |
-
import
|
|
|
9 |
from io import BytesIO
|
10 |
-
import tempfile
|
11 |
-
import base64
|
12 |
from youtube_transcript_api import YouTubeTranscriptApi
|
13 |
-
from
|
14 |
-
from
|
15 |
-
import
|
16 |
-
import
|
17 |
-
import re
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# (Keep Constants as is)
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
}
|
41 |
-
|
42 |
-
|
43 |
-
"success": false,
|
44 |
-
"error": "Reason why transcription failed"
|
45 |
-
}
|
46 |
-
"""
|
47 |
-
try:
|
48 |
-
if not os.path.exists(file_path):
|
49 |
-
return json.dumps({"success": False, "error": "File does not exist."})
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
"start": segment["start"],
|
60 |
-
"end": segment["end"],
|
61 |
-
"text": segment["text"].strip()
|
62 |
-
}
|
63 |
-
for segment in result["segments"]
|
64 |
-
]
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
@tool
|
73 |
-
def
|
74 |
"""
|
75 |
-
|
76 |
-
This tool fetches the English transcript for a given YouTube video. Automatically generated subtitles
|
77 |
-
are also supported. The result includes each snippet's start time, duration, and text.
|
78 |
Args:
|
79 |
-
|
|
|
80 |
Returns:
|
81 |
-
A JSON-formatted string containing either the transcript with timestamps or an error message.
|
82 |
{
|
83 |
-
"
|
84 |
-
"
|
85 |
-
|
86 |
-
{"start": 1.54, "duration": 4.16, "text": "how are you"},
|
87 |
...
|
88 |
-
|
89 |
-
|
90 |
-
OR
|
91 |
-
{
|
92 |
-
"success": false,
|
93 |
-
"error": "Reason why the transcript could not be retrieved"
|
94 |
}
|
95 |
"""
|
96 |
-
|
97 |
-
# Extract video ID from URL
|
98 |
-
parsed_url = urlparse(video_url)
|
99 |
-
query_params = parse_qs(parsed_url.query)
|
100 |
-
video_id = query_params.get("v", [None])[0]
|
101 |
-
|
102 |
-
if not video_id:
|
103 |
-
return json.dumps({"success": False, "error": "Invalid YouTube URL. Could not extract video ID."})
|
104 |
-
|
105 |
-
fetched_transcript = YouTubeTranscriptApi().fetch(video_id)
|
106 |
-
transcript_data = [
|
107 |
-
{
|
108 |
-
"start": snippet.start,
|
109 |
-
"duration": snippet.duration,
|
110 |
-
"text": snippet.text
|
111 |
-
}
|
112 |
-
for snippet in fetched_transcript
|
113 |
-
]
|
114 |
-
|
115 |
-
return json.dumps({"success": True, "transcript": transcript_data})
|
116 |
-
|
117 |
-
except VideoUnavailable:
|
118 |
-
return json.dumps({"success": False, "error": "The video is unavailable."})
|
119 |
-
except TranscriptsDisabled:
|
120 |
-
return json.dumps({"success": False, "error": "Transcripts are disabled for this video."})
|
121 |
-
except NoTranscriptFound:
|
122 |
-
return json.dumps({"success": False, "error": "No transcript found for this video."})
|
123 |
-
except Exception as e:
|
124 |
-
return json.dumps({"success": False, "error": str(e)})
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
self.code_agent = CodeAgent(
|
134 |
-
tools=[PythonInterpreterTool(), DuckDuckGoSearchTool(), VisitWebpageTool(), transcribe_audio_file,
|
135 |
-
get_youtube_transcript,
|
136 |
-
FinalAnswerTool()],
|
137 |
-
model=model,
|
138 |
-
max_steps=20,
|
139 |
-
name="hf_agent_course_final_assignment_solver",
|
140 |
-
prompt_templates=yaml.safe_load(
|
141 |
-
importlib.resources.files("prompts").joinpath("code_agent.yaml").read_text()
|
142 |
-
)
|
143 |
|
144 |
-
)
|
145 |
-
print("BasicAgent initialized.")
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
tmp_file.write(response.content)
|
170 |
-
file_path = tmp_file.name
|
171 |
-
return question + "\n\nMentioned .mp3 file local path is: " + file_path
|
172 |
-
elif file_name.endswith(".py"):
|
173 |
-
file_content = response.text
|
174 |
-
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
|
175 |
-
elif file_name.endswith(".xlsx"):
|
176 |
-
xlsx_io = BytesIO(response.content)
|
177 |
-
df = pd.read_excel(xlsx_io)
|
178 |
-
file_content = df.to_csv(index=False)
|
179 |
-
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
|
180 |
-
elif file_name.endswith(".png"):
|
181 |
-
base64_str = base64.b64encode(response.content).decode('utf-8')
|
182 |
-
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
|
183 |
-
|
184 |
-
|
185 |
-
def enrich_question_with_associated_file_details(self, task_id:str, question: str, file_name: str) -> str:
|
186 |
-
api_url = DEFAULT_API_URL
|
187 |
-
get_associated_files_url = f"{api_url}/files/{task_id}"
|
188 |
-
response = requests.get(get_associated_files_url, timeout=15)
|
189 |
-
response.raise_for_status()
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
|
199 |
-
elif file_name.endswith(".xlsx"):
|
200 |
-
xlsx_io = BytesIO(response.content)
|
201 |
-
df = pd.read_excel(xlsx_io)
|
202 |
-
file_content = df.to_csv(index=False)
|
203 |
-
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
|
204 |
-
elif file_name.endswith(".png"):
|
205 |
-
base64_str = base64.b64encode(response.content).decode('utf-8')
|
206 |
-
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
210 |
"""
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
import inspect
|
5 |
import pandas as pd
|
6 |
+
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import heapq
|
9 |
+
from collections import Counter
|
10 |
+
import re
|
11 |
from io import BytesIO
|
|
|
|
|
12 |
from youtube_transcript_api import YouTubeTranscriptApi
|
13 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
14 |
+
from langchain_community.document_loaders import WikipediaLoader
|
15 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
16 |
+
from langchain_community.document_loaders import ArxivLoader
|
|
|
|
|
|
|
17 |
|
18 |
# (Keep Constants as is)
|
19 |
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
+
#Load environment variables
|
23 |
+
load_dotenv()
|
24 |
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
from smolagents import Tool
|
29 |
+
from langchain_community.document_loaders import WikipediaLoader
|
30 |
+
|
31 |
+
class WikiSearchTool(Tool):
|
32 |
+
name = "wiki_search"
|
33 |
+
description = "Search Wikipedia for a query and return up to 2 results."
|
34 |
+
inputs = {
|
35 |
+
"query": {"type": "string", "description": "The search term for Wikipedia."}
|
36 |
+
}
|
37 |
+
output_type = "string"
|
38 |
+
|
39 |
+
def forward(self, query: str) -> str:
|
40 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
41 |
+
|
42 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
43 |
+
[
|
44 |
+
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
45 |
+
for doc in search_docs
|
46 |
]
|
47 |
+
)
|
48 |
+
return formatted_search_docs
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
class StringReverseTool(Tool):
|
54 |
+
name = "reverse_message"
|
55 |
+
description = "When you received a strange text, try to reverse it and perform action described in reversed message."
|
56 |
+
inputs = {
|
57 |
+
"message": {
|
58 |
+
"type": "string",
|
59 |
+
"description": "A message, which looks like strange and can be reversed to get actions to execute."
|
60 |
}
|
61 |
+
}
|
62 |
+
output_type = "string"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def __init__(self):
|
65 |
+
return
|
66 |
|
67 |
+
def forward(self, message: str):
|
68 |
+
return message[::-1]
|
69 |
|
70 |
+
class KeywordsExtractorTool(Tool):
|
71 |
+
"""Extracts top 5 keywords from a given text based on frequency."""
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
name = "keywords_extractor"
|
74 |
+
description = "This tool returns the 5 most frequent keywords occur in provided block of text."
|
75 |
|
76 |
+
inputs = {
|
77 |
+
"text": {
|
78 |
+
"type": "string",
|
79 |
+
"description": "Text to analyze for keywords.",
|
80 |
+
}
|
81 |
+
}
|
82 |
+
output_type = "string"
|
83 |
|
84 |
+
def forward(self, text: str) -> str:
|
85 |
+
try:
|
86 |
+
all_words = re.findall(r'\b\w+\b', text.lower())
|
87 |
+
conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'}
|
88 |
+
filtered_words = []
|
89 |
+
for w in all_words:
|
90 |
+
if w not in conjunctions:
|
91 |
+
filtered_words.push(w)
|
92 |
+
word_counts = Counter(filtered_words)
|
93 |
+
k = 5
|
94 |
+
return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1])
|
95 |
+
except Exception as e:
|
96 |
+
return f"Error during extracting most common words: {e}"
|
97 |
|
98 |
@tool
|
99 |
+
def parse_excel_to_json(task_id: str) -> dict:
|
100 |
"""
|
101 |
+
For a given task_id fetch and parse an Excel file and save parsed data in structured JSON file.
|
|
|
|
|
102 |
Args:
|
103 |
+
task_id: An task ID to fetch.
|
104 |
+
|
105 |
Returns:
|
|
|
106 |
{
|
107 |
+
"task_id": str,
|
108 |
+
"sheets": {
|
109 |
+
"SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
|
|
|
110 |
...
|
111 |
+
},
|
112 |
+
"status": "Success" | "Error"
|
|
|
|
|
|
|
|
|
113 |
}
|
114 |
"""
|
115 |
+
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
try:
|
118 |
+
response = requests.get(url, timeout=100)
|
119 |
+
if response.status_code != 200:
|
120 |
+
return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"}
|
121 |
+
|
122 |
+
xls_content = pd.ExcelFile(BytesIO(response.content))
|
123 |
+
json_sheets = {}
|
124 |
+
|
125 |
+
for sheet in xls_content.sheet_names:
|
126 |
+
df = xls_content.parse(sheet)
|
127 |
+
df = df.dropna(how="all")
|
128 |
+
rows = df.head(20).to_dict(orient="records")
|
129 |
+
json_sheets[sheet] = rows
|
130 |
+
|
131 |
+
return {
|
132 |
+
"task_id": task_id,
|
133 |
+
"sheets": json_sheets,
|
134 |
+
"status": "Success"
|
135 |
+
}
|
136 |
|
137 |
+
except Exception as e:
|
138 |
+
return {
|
139 |
+
"task_id": task_id,
|
140 |
+
"sheets": {},
|
141 |
+
"status": f"Error in parsing Excel file: {str(e)}"
|
142 |
+
}
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
145 |
|
146 |
+
class VideoTranscriptionTool(Tool):
|
147 |
+
"""Fetch transcripts from YouTube videos"""
|
148 |
+
name = "transcript_video"
|
149 |
+
description = "Fetch text transcript from YouTube movies with optional timestamps"
|
150 |
+
inputs = {
|
151 |
+
"url": {"type": "string", "description": "YouTube video URL or ID"},
|
152 |
+
"include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True}
|
153 |
+
}
|
154 |
+
output_type = "string"
|
155 |
|
156 |
+
def forward(self, url: str, include_timestamps: bool = False) -> str:
|
157 |
|
158 |
+
if "youtube.com/watch" in url:
|
159 |
+
video_id = url.split("v=")[1].split("&")[0]
|
160 |
+
elif "youtu.be/" in url:
|
161 |
+
video_id = url.split("youtu.be/")[1].split("?")[0]
|
162 |
+
elif len(url.strip()) == 11: # Direct ID
|
163 |
+
video_id = url.strip()
|
164 |
+
else:
|
165 |
+
return f"YouTube URL or ID: {url} is invalid!"
|
166 |
|
167 |
+
try:
|
168 |
+
transcription = YouTubeTranscriptApi.get_transcript(video_id)
|
169 |
|
170 |
+
if include_timestamps:
|
171 |
+
formatted_transcription = []
|
172 |
+
for part in transcription:
|
173 |
+
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
|
174 |
+
formatted_transcription.append(f"[{timestamp}] {part['text']}")
|
175 |
+
return "\n".join(formatted_transcription)
|
176 |
+
else:
|
177 |
+
return " ".join([part['text'] for part in transcription])
|
178 |
|
179 |
+
except Exception as e:
|
180 |
+
return f"Error in extracting YouTube transcript: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
class BasicAgent:
|
183 |
+
def __init__(self):
|
184 |
+
token = os.environ.get("HF_API_TOKEN")
|
185 |
+
model = HfApiModel(
|
186 |
+
temperature=0.1,
|
187 |
+
token=token
|
188 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
search_tool = DuckDuckGoSearchTool()
|
191 |
+
wiki_search_tool = WikiSearchTool()
|
192 |
+
str_reverse_tool = StringReverseTool()
|
193 |
+
keywords_extract_tool = KeywordsExtractorTool()
|
194 |
+
speech_to_text_tool = SpeechToTextTool()
|
195 |
+
visit_webpage_tool = VisitWebpageTool()
|
196 |
+
final_answer_tool = FinalAnswerTool()
|
197 |
+
video_transcription_tool = VideoTranscriptionTool()
|
198 |
+
|
199 |
+
system_prompt = f"""
|
200 |
+
You are my general AI assistant. Your task is to answer the question I asked.
|
201 |
+
First, provide an explanation of your reasoning, step by step, to arrive at the answer.
|
202 |
+
Then, return your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]".
|
203 |
+
[YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question.
|
204 |
+
If the answer is a number, do not use commas or units (e.g., $, %) unless specified.
|
205 |
+
If the answer is a string, do not use articles or abbreviations (e.g., for cities), and write digits in plain text unless specified.
|
206 |
+
If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string.
|
207 |
+
"""
|
208 |
+
self.agent = CodeAgent(
|
209 |
+
model=model,
|
210 |
+
tools=[search_tool, wiki_search_tool, str_reverse_tool, keywords_extract_tool, speech_to_text_tool, visit_webpage_tool, final_answer_tool, parse_excel_to_json, video_transcription_tool],
|
211 |
+
add_base_tools=True
|
212 |
+
)
|
213 |
+
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt
|
214 |
+
|
215 |
+
def __call__(self, question: str) -> str:
|
216 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
217 |
+
answer = self.agent.run(question)
|
218 |
+
print(f"Agent returning answer: {answer}")
|
219 |
+
return answer
|
220 |
+
|
221 |
|
222 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
223 |
"""
|