Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,219 +1,146 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
4 |
-
from langgraph.prebuilt import tools_condition
|
5 |
-
from langgraph.prebuilt import ToolNode
|
6 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
-
from langchain_openai import ChatOpenAI
|
8 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
-
from langchain_huggingface import ChatHuggingFace
|
10 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
11 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
12 |
-
from langchain_community.document_loaders import WikipediaLoader
|
13 |
-
from langchain_community.document_loaders import ArxivLoader
|
14 |
-
from langchain_community.vectorstores import SupabaseVectorStore
|
15 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
16 |
-
from langchain_core.tools import tool
|
17 |
-
from langchain.tools.retriever import create_retriever_tool
|
18 |
-
from supabase.client import Client, create_client
|
19 |
-
|
20 |
-
load_dotenv()
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
a: first int
|
27 |
-
b: second int
|
28 |
-
"""
|
29 |
-
return a * b
|
30 |
|
31 |
-
@tool
|
32 |
-
def add(a: int, b: int) -> int:
|
33 |
-
"""Add two numbers.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
a: first int
|
37 |
-
b: second int
|
38 |
-
"""
|
39 |
-
return a + b
|
40 |
|
41 |
@tool
|
42 |
-
def
|
43 |
-
"""
|
44 |
-
|
45 |
Args:
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
"""
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@tool
|
52 |
-
def
|
53 |
-
"""
|
54 |
-
|
55 |
Args:
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
"""
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
@tool
|
64 |
-
def
|
65 |
-
"""
|
66 |
-
|
67 |
Args:
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
"""
|
71 |
-
return a % b
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
@tool
|
88 |
-
def web_search(query: str) -> str:
|
89 |
-
"""Search Tavily for a query and return maximum 3 results.
|
90 |
-
|
91 |
-
Args:
|
92 |
-
query: The search query."""
|
93 |
-
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
94 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
95 |
-
[
|
96 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
97 |
-
for doc in search_docs
|
98 |
-
])
|
99 |
-
return {"web_results": formatted_search_docs}
|
100 |
|
101 |
@tool
|
102 |
-
def
|
103 |
-
"""
|
104 |
-
|
105 |
Args:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
for doc in search_docs
|
112 |
-
])
|
113 |
-
return {"arvix_results": formatted_search_docs}
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# load the system prompt from the file
|
118 |
-
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
119 |
-
system_prompt = f.read()
|
120 |
-
|
121 |
-
# System message
|
122 |
-
sys_msg = SystemMessage(content=system_prompt)
|
123 |
-
|
124 |
-
# build a retriever
|
125 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
126 |
-
supabase: Client = create_client(
|
127 |
-
os.environ.get("SUPABASE_URL"),
|
128 |
-
os.environ.get("SUPABASE_SERVICE_KEY"))
|
129 |
-
vector_store = SupabaseVectorStore(
|
130 |
-
client=supabase,
|
131 |
-
embedding= embeddings,
|
132 |
-
table_name="documents",
|
133 |
-
query_name="match_documents_langchain",
|
134 |
-
)
|
135 |
-
create_retriever_tool = create_retriever_tool(
|
136 |
-
retriever=vector_store.as_retriever(),
|
137 |
-
name="Question Search",
|
138 |
-
description="A tool to retrieve similar questions from a vector store.",
|
139 |
-
)
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
tools = [
|
144 |
-
multiply,
|
145 |
-
add,
|
146 |
-
subtract,
|
147 |
-
divide,
|
148 |
-
modulus,
|
149 |
-
wiki_search,
|
150 |
-
web_search,
|
151 |
-
arvix_search,
|
152 |
-
]
|
153 |
-
|
154 |
-
# Build graph function
|
155 |
-
def build_graph(provider: str = "huggingface", huggingface_model: str = "mistral"):
|
156 |
-
"""Build the graph with tool binding."""
|
157 |
-
|
158 |
-
if provider == "google":
|
159 |
-
llm = ChatGoogleGenerativeAI(
|
160 |
-
model="gemini-2.0-flash",
|
161 |
-
temperature=0,
|
162 |
-
google_api_key=os.getenv("GOOGLE_API_KEY")
|
163 |
-
)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
elif huggingface_model == "llama":
|
169 |
-
repo_id = "Meta-DeepLearning/llama-2-7b-chat-hf"
|
170 |
-
else:
|
171 |
-
raise ValueError("Unsupported Hugging Face model")
|
172 |
-
|
173 |
-
hf_token = os.getenv("HF_TOKEN")
|
174 |
-
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token else {}
|
175 |
-
|
176 |
-
llm = ChatHuggingFace(
|
177 |
-
llm=HuggingFaceEndpoint(
|
178 |
-
repo_id=repo_id,
|
179 |
-
temperature=0,
|
180 |
-
)
|
181 |
-
)
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
|
186 |
-
return
|
187 |
|
188 |
-
# ✅ Bind tools if defined
|
189 |
-
llm_with_tools = llm.bind_tools(tools) # Make sure `tools` is defined/imported
|
190 |
-
return llm_with_tools
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
builder.add_node("retriever", retriever)
|
207 |
-
builder.add_node("assistant", assistant)
|
208 |
-
builder.add_node("tools", ToolNode(tools))
|
209 |
-
builder.add_edge(START, "retriever")
|
210 |
-
builder.add_edge("retriever", "assistant")
|
211 |
-
builder.add_conditional_edges(
|
212 |
-
"assistant",
|
213 |
-
tools_condition,
|
214 |
-
)
|
215 |
-
builder.add_edge("tools", "assistant")
|
216 |
|
217 |
-
|
218 |
-
|
|
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
import requests
|
5 |
+
from google import genai
|
6 |
+
from google.genai import types
|
7 |
+
from smolagents import tool
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@tool
|
11 |
+
def download_file_of_task_id(task_id: str, file_name: str) -> str:
|
12 |
+
"""
|
13 |
+
Download a file associated with a specific task ID and save it to a temporary location.
|
14 |
Args:
|
15 |
+
task_id (str): The unique identifier of the task associated with the file to download.
|
16 |
+
file_name (str): The name to assign to the downloaded file.
|
17 |
+
Returns:
|
18 |
+
str: Path to the downloaded file or an error message if the download fails.
|
19 |
"""
|
20 |
+
|
21 |
+
try:
|
22 |
+
# Create temporary file
|
23 |
+
temp_dir = tempfile.gettempdir()
|
24 |
+
filepath = os.path.join(temp_dir, file_name)
|
25 |
+
|
26 |
+
# Download the file
|
27 |
+
response = requests.get(f"https://agents-course-unit4-scoring.hf.space/files/{task_id}",
|
28 |
+
stream=True)
|
29 |
+
response.raise_for_status()
|
30 |
+
|
31 |
+
# Save the file
|
32 |
+
with open(filepath, 'wb') as f:
|
33 |
+
for chunk in response.iter_content(chunk_size=8192):
|
34 |
+
f.write(chunk)
|
35 |
+
|
36 |
+
return filepath
|
37 |
+
except Exception as e:
|
38 |
+
return f"Error downloading file: {e!s}"
|
39 |
+
|
40 |
|
41 |
@tool
|
42 |
+
def analyze_audio_file(path_file_audio: str, query: str) -> str:
|
43 |
+
"""
|
44 |
+
Analyzes an MP3 audio file to answer a specific query.
|
45 |
Args:
|
46 |
+
path_file_audio (str): Path to the MP3 audio file to be analyzed.
|
47 |
+
query (str): Question or query to analyze the content of the audio file.
|
48 |
+
Returns:
|
49 |
+
str: The result of the analysis of audio.
|
50 |
"""
|
51 |
+
|
52 |
+
client = genai.Client(api_key=os.getenv("API_KEY"))
|
53 |
+
|
54 |
+
myfile = client.files.upload(file=path_file_audio)
|
55 |
+
|
56 |
+
response = client.models.generate_content(
|
57 |
+
model=os.getenv("GOOGLE_MODEL_ID"),
|
58 |
+
contents=[f"Carefully analyze the audio to answer the question correctly.\n\n The question is {query}",
|
59 |
+
myfile]
|
60 |
+
)
|
61 |
+
|
62 |
+
return response.text
|
63 |
+
|
64 |
|
65 |
@tool
|
66 |
+
def analyze_youtube_video(url_youtube_video: str, query: str) -> str:
|
67 |
+
"""
|
68 |
+
Analyzes a YouTube video using the provided query.
|
69 |
Args:
|
70 |
+
url_youtube_video (str): URL of the YouTube video to analyze.
|
71 |
+
query (str): Query or question to analyze the content of the video.
|
72 |
+
Returns:
|
73 |
+
str: Result of the video analysis.
|
74 |
"""
|
|
|
75 |
|
76 |
+
client = genai.Client(api_key=os.getenv("API_KEY"))
|
77 |
+
|
78 |
+
response = client.models.generate_content(
|
79 |
+
model=f"models/{os.getenv('GOOGLE_MODEL_ID')}",
|
80 |
+
contents=types.Content(
|
81 |
+
parts=[
|
82 |
+
types.Part(
|
83 |
+
file_data=types.FileData(file_uri=url_youtube_video)
|
84 |
+
),
|
85 |
+
types.Part(text=f"Carefully analyze each frame of the video to answer the question correctly.\n\n The question is {query}")
|
86 |
+
]
|
87 |
+
)
|
88 |
+
)
|
89 |
+
|
90 |
+
return response.text
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
@tool
|
94 |
+
def analyze_image_file(path_file_image: str, query: str) -> str:
|
95 |
+
"""
|
96 |
+
Analyzes an image file to answer a specific query.
|
97 |
Args:
|
98 |
+
path_file_image (str): Path to the image file to be analyzed.
|
99 |
+
query (str): Question or query to analyze the content of the image file.
|
100 |
+
Returns:
|
101 |
+
str: The result of the analysis of audio.
|
102 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
client = genai.Client(api_key=os.getenv("API_KEY"))
|
105 |
+
|
106 |
+
myfile = client.files.upload(file=path_file_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
response = client.models.generate_content(
|
109 |
+
model=os.getenv('GOOGLE_MODEL_ID'),
|
110 |
+
contents=[myfile,
|
111 |
+
f"Carefully analyze the image file and think to answer the question correctly.\n\n The question is {query}"]
|
112 |
+
)
|
113 |
|
114 |
+
return response.text
|
115 |
|
|
|
|
|
|
|
116 |
|
117 |
+
@tool
|
118 |
+
def analyze_xlsx_file(file_path: str, query: str) -> str:
|
119 |
+
"""
|
120 |
+
Analyze an Excel file using pandas and answer a question about it.
|
121 |
+
Args:
|
122 |
+
file_path: Path to the Excel file
|
123 |
+
query: Question about the data
|
124 |
+
Returns:
|
125 |
+
Analysis result or error message
|
126 |
+
"""
|
127 |
|
128 |
+
try:
|
129 |
+
import pandas as pd
|
130 |
+
|
131 |
+
# Read the Excel file
|
132 |
+
df = pd.read_excel(file_path)
|
133 |
+
|
134 |
+
# Run various analyses based on the query
|
135 |
+
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
136 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Add summary statistics
|
139 |
+
result += "Summary statistics:\n"
|
140 |
+
result += str(df.describe())
|
141 |
|
142 |
+
return result
|
143 |
+
except ImportError:
|
144 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
145 |
+
except Exception as e:
|
146 |
+
return f"Error analyzing Excel file: {e!s}"
|