Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
|
@@ -1,213 +1,104 @@
|
|
| 1 |
# agent.py
|
| 2 |
import os
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from langgraph.prebuilt import tools_condition
|
| 6 |
-
from langgraph.prebuilt import ToolNode
|
| 7 |
-
#from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
-
from langchain_groq import ChatGroq
|
| 9 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
| 10 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 11 |
-
from langchain_community.document_loaders import WikipediaLoader
|
| 12 |
-
from langchain_community.document_loaders import ArxivLoader
|
| 13 |
-
from langchain_community.vectorstores import SupabaseVectorStore
|
| 14 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
-
from
|
| 17 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
load_dotenv()
|
| 20 |
|
| 21 |
-
@tool
|
| 22 |
-
def multiply(a: int, b: int) -> int:
|
| 23 |
-
"""Multiply two numbers.
|
| 24 |
-
Args:
|
| 25 |
-
a: first int
|
| 26 |
-
b: second int
|
| 27 |
-
"""
|
| 28 |
-
return a * b
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
a: first int
|
| 36 |
-
b: second int
|
| 37 |
-
"""
|
| 38 |
-
return a + b
|
| 39 |
|
| 40 |
@tool
|
| 41 |
-
def
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
Args:
|
| 45 |
-
a: first int
|
| 46 |
-
b: second int
|
| 47 |
-
"""
|
| 48 |
-
return a - b
|
| 49 |
|
| 50 |
@tool
|
| 51 |
-
def
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
Args:
|
| 55 |
-
a: first int
|
| 56 |
-
b: second int
|
| 57 |
-
"""
|
| 58 |
-
if b == 0:
|
| 59 |
-
raise ValueError("Cannot divide by zero.")
|
| 60 |
-
return a / b
|
| 61 |
|
| 62 |
@tool
|
| 63 |
-
def
|
| 64 |
-
"""
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
a: first int
|
| 68 |
-
b: second int
|
| 69 |
-
"""
|
| 70 |
-
return a % b
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
"""Search Wikipedia for a query and return maximum 2 results.
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 82 |
-
for doc in search_docs
|
| 83 |
-
])
|
| 84 |
-
return {"wiki_results": formatted_search_docs}
|
| 85 |
-
|
| 86 |
-
@tool
|
| 87 |
-
def web_search(query: str) -> str:
|
| 88 |
-
"""Search Tavily for a query and return maximum 3 results.
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
for doc in search_docs
|
| 97 |
])
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
@tool
|
| 101 |
-
def arvix_search(query: str) -> str:
|
| 102 |
-
"""Search Arxiv for a query and return maximum 3 result.
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
# load the system prompt from the file
|
| 117 |
-
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 118 |
-
system_prompt = f.read()
|
| 119 |
-
|
| 120 |
-
# System message
|
| 121 |
-
sys_msg = SystemMessage(content=system_prompt)
|
| 122 |
-
|
| 123 |
-
# build a retriever
|
| 124 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
| 125 |
-
supabase: Client = create_client(
|
| 126 |
-
os.environ.get("SUPABASE_URL"),
|
| 127 |
-
os.environ.get("SUPABASE_SERVICE_KEY"))
|
| 128 |
-
vector_store = SupabaseVectorStore(
|
| 129 |
-
client=supabase,
|
| 130 |
-
embedding= embeddings,
|
| 131 |
-
table_name="documents",
|
| 132 |
-
query_name="match_documents_langchain",
|
| 133 |
-
)
|
| 134 |
-
create_retriever_tool = create_retriever_tool(
|
| 135 |
-
retriever=vector_store.as_retriever(),
|
| 136 |
-
name="Question Search",
|
| 137 |
-
description="A tool to retrieve similar questions from a vector store.",
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
tools = [
|
| 143 |
-
multiply,
|
| 144 |
-
add,
|
| 145 |
-
subtract,
|
| 146 |
-
divide,
|
| 147 |
-
modulus,
|
| 148 |
-
wiki_search,
|
| 149 |
-
web_search,
|
| 150 |
-
arvix_search,
|
| 151 |
-
]
|
| 152 |
-
|
| 153 |
-
# Build graph function
|
| 154 |
-
def build_graph(provider: str = "groq"):
|
| 155 |
-
"""Build the graph"""
|
| 156 |
-
# Load environment variables from .env file
|
| 157 |
-
if provider == "google":
|
| 158 |
-
# Google Gemini
|
| 159 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
| 160 |
-
elif provider == "groq":
|
| 161 |
-
# Groq https://console.groq.com/docs/models
|
| 162 |
-
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
| 163 |
-
elif provider == "huggingface":
|
| 164 |
-
# TODO: Add huggingface endpoint
|
| 165 |
-
llm = ChatHuggingFace(
|
| 166 |
-
llm=HuggingFaceEndpoint(
|
| 167 |
-
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
| 168 |
-
temperature=0,
|
| 169 |
-
),
|
| 170 |
)
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
llm_with_tools = llm.bind_tools(tools)
|
| 175 |
-
|
| 176 |
-
# Node
|
| 177 |
-
def assistant(state: MessagesState):
|
| 178 |
-
"""Assistant node"""
|
| 179 |
-
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 180 |
|
| 181 |
-
def
|
| 182 |
-
"""
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
if __name__ == "__main__":
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
# Run the graph
|
| 210 |
-
messages = [HumanMessage(content=question)]
|
| 211 |
-
messages = graph.invoke({"messages": messages})
|
| 212 |
-
for m in messages["messages"]:
|
| 213 |
-
m.pretty_print()
|
|
|
|
| 1 |
# agent.py
|
| 2 |
import os
|
| 3 |
+
from typing import TypedDict, Annotated, Sequence, Dict, Any, List
|
| 4 |
+
from langchain_core.messages import BaseMessage, HumanMessage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from langchain_core.tools import tool
|
| 6 |
+
from langchain_openai import ChatOpenAI
|
| 7 |
+
from langgraph.graph import END, StateGraph
|
| 8 |
+
from langgraph.prebuilt import ToolNode
|
| 9 |
+
from langchain_community.tools import DuckDuckGoSearchResults
|
| 10 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
| 11 |
+
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
| 12 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 13 |
+
import operator
|
| 14 |
+
from langchain_experimental.utilities import PythonREPL
|
| 15 |
|
| 16 |
load_dotenv()
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
class AgentState(TypedDict):
|
| 20 |
+
messages: Annotated[Sequence[BaseMessage], operator.add]
|
| 21 |
+
sender: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
@tool
|
| 24 |
+
def wikipedia_search(query: str) -> str:
|
| 25 |
+
"""Search Wikipedia for information."""
|
| 26 |
+
return WikipediaAPIWrapper().run(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@tool
|
| 29 |
+
def web_search(query: str, num_results: int = 3) -> list:
|
| 30 |
+
"""Search the web for current information."""
|
| 31 |
+
return DuckDuckGoSearchResults(num_results=num_results).run(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
@tool
|
| 34 |
+
def calculate(expression: str) -> str:
|
| 35 |
+
"""Evaluate mathematical expressions."""
|
| 36 |
+
python_repl = PythonREPL()
|
| 37 |
+
return python_repl.run(expression)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
class BasicAgent:
|
| 40 |
+
"""A complete langgraph agent implementation."""
|
|
|
|
| 41 |
|
| 42 |
+
def __init__(self, model_name: str = "gpt-3.5-turbo"):
|
| 43 |
+
self.tools = [wikipedia_search, web_search, calculate]
|
| 44 |
+
self.llm = ChatOpenAI(model=model_name, temperature=0.7)
|
| 45 |
+
self.agent_executor = self._build_agent_executor()
|
| 46 |
+
self.workflow = self._build_workflow() # Initialize workflow here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def _build_agent_executor(self) -> AgentExecutor:
|
| 49 |
+
"""Build the agent executor with tools."""
|
| 50 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 51 |
+
("system", "You are a helpful AI assistant. Use tools when needed."),
|
| 52 |
+
MessagesPlaceholder(variable_name="messages"),
|
| 53 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
|
|
| 54 |
])
|
| 55 |
+
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
|
| 56 |
+
return AgentExecutor(agent=agent, tools=self.tools, verbose=True)
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
def _build_workflow(self) -> StateGraph:
|
| 59 |
+
"""Build and compile the agent workflow."""
|
| 60 |
+
workflow = StateGraph(AgentState)
|
| 61 |
+
|
| 62 |
+
workflow.add_node("agent", self._run_agent)
|
| 63 |
+
workflow.add_node("tools", ToolNode(self.tools))
|
| 64 |
+
|
| 65 |
+
workflow.set_entry_point("agent")
|
| 66 |
+
workflow.add_conditional_edges(
|
| 67 |
+
"agent",
|
| 68 |
+
self._should_continue,
|
| 69 |
+
{"continue": "tools", "end": END}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
+
workflow.add_edge("tools", "agent")
|
| 72 |
+
|
| 73 |
+
return workflow.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
def _run_agent(self, state: AgentState) -> Dict[str, Any]:
|
| 76 |
+
"""Execute the agent."""
|
| 77 |
+
response = self.agent_executor.invoke({"messages": state["messages"]})
|
| 78 |
+
return {"messages": [response["output"]]}
|
| 79 |
+
|
| 80 |
+
def _should_continue(self, state: AgentState) -> str:
|
| 81 |
+
"""Determine if the workflow should continue."""
|
| 82 |
+
last_message = state["messages"][-1]
|
| 83 |
+
return "continue" if last_message.additional_kwargs.get("tool_calls") else "end"
|
| 84 |
+
|
| 85 |
+
def __call__(self, question: str) -> str:
|
| 86 |
+
"""Process a user question and return a response."""
|
| 87 |
+
# Initialize state with the user's question
|
| 88 |
+
state = AgentState(messages=[HumanMessage(content=question)], sender="user")
|
| 89 |
+
|
| 90 |
+
# Execute the workflow
|
| 91 |
+
for output in self.workflow.stream(state):
|
| 92 |
+
for key, value in output.items():
|
| 93 |
+
if key == "messages":
|
| 94 |
+
for message in value:
|
| 95 |
+
if isinstance(message, BaseMessage):
|
| 96 |
+
return message.content
|
| 97 |
+
|
| 98 |
+
return "Sorry, I couldn't generate a response."
|
| 99 |
+
|
| 100 |
+
# Example usage
|
| 101 |
if __name__ == "__main__":
|
| 102 |
+
agent = BasicAgent()
|
| 103 |
+
response = agent("What's the capital of France?")
|
| 104 |
+
print(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|