Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,508 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
|
7 |
-
from dotenv import load_dotenv
|
8 |
import heapq
|
9 |
from collections import Counter
|
10 |
-
import re
|
11 |
from io import BytesIO
|
12 |
from youtube_transcript_api import YouTubeTranscriptApi
|
13 |
-
from
|
14 |
-
from langchain_community.document_loaders import WikipediaLoader
|
15 |
-
from
|
16 |
-
from langchain_community.
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
from smolagents import Tool
|
29 |
-
from langchain_community.document_loaders import WikipediaLoader
|
30 |
-
|
31 |
class WikiSearchTool(Tool):
|
|
|
32 |
name = "wiki_search"
|
33 |
-
description = "Search Wikipedia for a query
|
34 |
-
inputs = {
|
35 |
-
"query": {"type": "string", "description": "The search term for Wikipedia."}
|
36 |
-
}
|
37 |
output_type = "string"
|
38 |
|
39 |
def forward(self, query: str) -> str:
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
for doc in search_docs
|
46 |
-
]
|
47 |
-
)
|
48 |
-
return formatted_search_docs
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
inputs = {
|
57 |
-
"
|
58 |
-
|
59 |
-
"description": "A message, which looks like strange and can be reversed to get actions to execute."
|
60 |
-
}
|
61 |
}
|
62 |
output_type = "string"
|
63 |
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
76 |
inputs = {
|
77 |
-
"
|
78 |
-
|
79 |
-
"description": "Text to analyze for keywords.",
|
80 |
-
}
|
81 |
}
|
82 |
output_type = "string"
|
83 |
|
84 |
-
def forward(self,
|
|
|
|
|
|
|
85 |
try:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
|
100 |
-
|
101 |
-
def parse_excel_to_json(task_id: str) -> dict:
|
102 |
"""
|
103 |
-
|
104 |
-
|
105 |
-
task_id: An task ID to fetch.
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
{
|
109 |
-
"task_id": str,
|
110 |
-
"sheets": {
|
111 |
-
"SheetName1": [ {col1: val1, col2: val2, ...}, ... ],
|
112 |
-
...
|
113 |
-
},
|
114 |
-
"status": "Success" | "Error"
|
115 |
-
}
|
116 |
"""
|
117 |
-
|
118 |
-
|
119 |
-
try:
|
120 |
-
response = requests.get(url, timeout=100)
|
121 |
-
if response.status_code != 200:
|
122 |
-
return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"}
|
123 |
-
|
124 |
-
xls_content = pd.ExcelFile(BytesIO(response.content))
|
125 |
-
json_sheets = {}
|
126 |
-
|
127 |
-
for sheet in xls_content.sheet_names:
|
128 |
-
df = xls_content.parse(sheet)
|
129 |
-
df = df.dropna(how="all")
|
130 |
-
rows = df.head(20).to_dict(orient="records")
|
131 |
-
json_sheets[sheet] = rows
|
132 |
-
|
133 |
-
return {
|
134 |
-
"task_id": task_id,
|
135 |
-
"sheets": json_sheets,
|
136 |
-
"status": "Success"
|
137 |
-
}
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
return {
|
141 |
-
"task_id": task_id,
|
142 |
-
"sheets": {},
|
143 |
-
"status": f"Error in parsing Excel file: {str(e)}"
|
144 |
-
}
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
class VideoTranscriptionTool(Tool):
|
149 |
-
"""Fetch transcripts from YouTube videos"""
|
150 |
-
name = "transcript_video"
|
151 |
-
description = "Fetch text transcript from YouTube movies with optional timestamps"
|
152 |
inputs = {
|
153 |
-
"
|
154 |
-
"
|
155 |
}
|
156 |
output_type = "string"
|
157 |
|
158 |
-
def forward(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
|
|
|
|
|
|
169 |
try:
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
else:
|
179 |
-
return "
|
180 |
|
|
|
|
|
|
|
181 |
except Exception as e:
|
182 |
-
|
|
|
183 |
|
|
|
184 |
class BasicAgent:
|
185 |
def __init__(self):
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
You are an advanced, helpful, and highly analytical research assistant. Your goal is to provide accurate, comprehensive, and well-structured answers to user queries, leveraging all available tools efficiently.
|
203 |
|
204 |
**Follow this robust process:**
|
@@ -206,7 +510,14 @@ You are an advanced, helpful, and highly analytical research assistant. Your goa
|
|
206 |
1. **Understand the User's Need:** Carefully analyze the user's question, including any attached files or specific requests (e.g., "summarize," "analyze data," "find facts").
|
207 |
2. **Formulate a Detailed Plan:** Before acting, create a clear, step-by-step plan. This plan should outline:
|
208 |
* What information needs to be gathered.
|
209 |
-
* Which tools are most appropriate for each step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
* How you will combine information from different sources.
|
211 |
* How you will verify or synthesize the findings.
|
212 |
3. **Execute the Plan Using Tools:** Call the necessary tools, providing clear and correct arguments. If a tool fails, try to understand why and adapt your plan (e.g., try a different search query or tool).
|
@@ -217,28 +528,63 @@ You are an advanced, helpful, and highly analytical research assistant. Your goa
|
|
217 |
* If the answer is a single number, provide only the number.
|
218 |
* If the answer is a list, provide comma-separated values.
|
219 |
* For complex answers, use structured formats like bullet points or JSON where appropriate to enhance readability.
|
220 |
-
* **Crucially, always include sources or references (e.g., URLs, Wikipedia titles, file names) where you obtained the information.** This builds trust and allows for verification.
|
221 |
* If you used `file_analysis` or `data_analysis` tools on an uploaded file, explicitly state that you analyzed the provided file.
|
222 |
|
223 |
**Important Considerations:**
|
224 |
-
* **Prioritize:** If the query involves a specific file, start by analyzing that file if appropriate.
|
225 |
* **Limitations:** If you cannot answer a question with the available tools, state that clearly.
|
226 |
* **Conciseness:** Be as concise as possible while providing an accurate answer.
|
227 |
"""
|
228 |
-
|
229 |
-
model=model,
|
230 |
-
tools=
|
231 |
-
|
232 |
-
|
233 |
)
|
234 |
-
|
|
|
235 |
|
236 |
def __call__(self, question: str) -> str:
|
237 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
238 |
answer = self.agent.run(question)
|
239 |
print(f"Agent returning answer: {answer}")
|
240 |
return answer
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
244 |
"""
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
5 |
import pandas as pd
|
|
|
|
|
6 |
import heapq
|
7 |
from collections import Counter
|
|
|
8 |
from io import BytesIO
|
9 |
from youtube_transcript_api import YouTubeTranscriptApi
|
10 |
+
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
|
11 |
+
from langchain_community.document_loaders import WikipediaLoader, PyPDFLoader, TextLoader
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain_community.vectorstores import DocArrayInMemorySearch
|
15 |
+
from langchain_core.documents import Document
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
import tempfile
|
18 |
+
import mimetypes
|
19 |
+
import logging
|
20 |
+
import uuid
|
21 |
+
# For timeout functionality
|
22 |
+
import concurrent.futures
|
23 |
+
import time
|
24 |
+
|
25 |
+
# --- Initialize logging ---
|
26 |
+
LOG_FILE_PATH = "agent_activity.log"
|
27 |
+
logging.basicConfig(
|
28 |
+
level=logging.INFO,
|
29 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
30 |
+
filename=LOG_FILE_PATH,
|
31 |
+
filemode='a'
|
32 |
+
)
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
# --- Load environment variables ---
|
36 |
load_dotenv()
|
37 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
38 |
+
HF_EMBEDDING_MODEL_ID = os.getenv("HF_EMBEDDING_MODEL_ID", "sentence-transformers/all-MiniLM-L6-v2")
|
39 |
+
|
40 |
+
if not HF_API_TOKEN:
|
41 |
+
logger.error("HF_API_TOKEN not found in environment variables! Please set it to use the HfApiModel.")
|
42 |
+
|
43 |
+
# --- Global Vector Store and Embeddings ---
|
44 |
+
try:
|
45 |
+
embeddings = HuggingFaceEmbeddings(model_name=HF_EMBEDDING_MODEL_ID)
|
46 |
+
logger.info(f"Initialized HuggingFaceEmbeddings with model: {HF_EMBEDDING_MODEL_ID}")
|
47 |
+
except Exception as e:
|
48 |
+
logger.error(f"Failed to initialize HuggingFaceEmbeddings: {e}. Please ensure the model_id is correct and dependencies are installed.")
|
49 |
+
embeddings = None
|
50 |
+
|
51 |
+
vectorstore = DocArrayInMemorySearch(embedding_function=embeddings) if embeddings else None
|
52 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
53 |
+
chunk_size=1000,
|
54 |
+
chunk_overlap=200,
|
55 |
+
length_function=len,
|
56 |
+
is_separator_regex=False,
|
57 |
+
)
|
58 |
+
logger.info("Initialized in-memory DocArrayInMemorySearch vector store and RecursiveCharacterTextSplitter.")
|
59 |
+
|
60 |
+
|
61 |
+
# --- Utility Functions ---
|
62 |
+
def extract_youtube_id(url: str) -> str:
|
63 |
+
"""Extract YouTube ID from various URL formats"""
|
64 |
+
patterns = [
|
65 |
+
r'(?:https?:\/\/)?(?:www\.)?youtube\.com\/watch\?v=([^&]+)',
|
66 |
+
r'(?:https?:\/\/)?youtu\.be\/([^?]+)',
|
67 |
+
r'([a-zA-Z0-9_-]{11})'
|
68 |
+
]
|
69 |
+
for pattern in patterns:
|
70 |
+
match = re.search(pattern, url)
|
71 |
+
if match:
|
72 |
+
return match.group(1)
|
73 |
+
return ""
|
74 |
+
|
75 |
+
def add_document_to_vector_store(content: str, source: str, metadata: dict = None):
|
76 |
+
"""
|
77 |
+
Adds content to the global vector store.
|
78 |
+
Chunks the content and creates LangChain Documents.
|
79 |
+
"""
|
80 |
+
if vectorstore is None:
|
81 |
+
logger.warning("Vector store not initialized. Cannot add document.")
|
82 |
+
return
|
83 |
|
84 |
+
try:
|
85 |
+
chunks = text_splitter.split_text(content)
|
86 |
+
docs = []
|
87 |
+
for i, chunk in enumerate(chunks):
|
88 |
+
doc_metadata = {"source": source, "chunk_index": i}
|
89 |
+
if metadata:
|
90 |
+
doc_metadata.update(metadata)
|
91 |
+
docs.append(Document(page_content=chunk, metadata=doc_metadata))
|
92 |
+
|
93 |
+
vectorstore.add_documents(docs)
|
94 |
+
logger.info(f"Added {len(docs)} chunks from '{source}' to the vector store.")
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Error adding document from '{source}' to vector store: {e}")
|
97 |
|
98 |
+
# --- Enhanced Tools ---
|
|
|
|
|
|
|
|
|
99 |
class WikiSearchTool(Tool):
|
100 |
+
"""Enhanced Wikipedia search with better formatting and error handling"""
|
101 |
name = "wiki_search"
|
102 |
+
description = "Search Wikipedia for a query. Returns up to 2 results with metadata."
|
103 |
+
inputs = {"query": {"type": "string", "description": "Search term for Wikipedia"}}
|
|
|
|
|
104 |
output_type = "string"
|
105 |
|
106 |
def forward(self, query: str) -> str:
|
107 |
+
try:
|
108 |
+
logger.info(f"Searching Wikipedia for: {query}")
|
109 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
110 |
+
if not docs:
|
111 |
+
logger.info(f"No Wikipedia articles found for: {query}")
|
112 |
+
return "No Wikipedia articles found."
|
113 |
+
|
114 |
+
formatted_results = []
|
115 |
+
for i, doc in enumerate(docs):
|
116 |
+
summary = doc.page_content[:1000] + "..." if len(doc.page_content) > 1000 else doc.page_content
|
117 |
+
|
118 |
+
add_document_to_vector_store(
|
119 |
+
content=doc.page_content,
|
120 |
+
source=doc.metadata.get('source', 'Wikipedia'),
|
121 |
+
metadata={"title": doc.metadata.get('title', 'N/A')}
|
122 |
+
)
|
123 |
+
|
124 |
+
formatted_results.append(
|
125 |
+
f"--- Wikipedia Result {i+1} ---\n"
|
126 |
+
f"Title: {doc.metadata.get('title', 'N/A')}\n"
|
127 |
+
f"URL: {doc.metadata.get('source', 'N/A')}\n"
|
128 |
+
f"Summary: {summary}\n"
|
129 |
+
)
|
130 |
+
return "\n\n".join(formatted_results)
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Wikipedia search error for '{query}': {e}")
|
133 |
+
return f"Wikipedia search error: {str(e)}"
|
134 |
+
|
135 |
+
class FileAnalysisTool(Tool):
|
136 |
+
"""Universal file analyzer for text/PDF/Excel files. Content added to vector store."""
|
137 |
+
name = "file_analysis"
|
138 |
+
description = "Analyze text, PDF, and Excel files. Returns extracted content. Text and PDF content is also indexed for future retrieval."
|
139 |
+
inputs = {"file_path": {"type": "string", "description": "Path to the local file"}}
|
140 |
+
output_type = "string"
|
141 |
|
142 |
+
def forward(self, file_path: str) -> str:
|
143 |
+
if not os.path.exists(file_path):
|
144 |
+
return f"File not found: {file_path}"
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
try:
|
147 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
148 |
+
logger.info(f"Analyzing file: {file_path} with MIME type: {mime_type}")
|
149 |
+
|
150 |
+
content = ""
|
151 |
+
if mime_type == "application/pdf":
|
152 |
+
content = self._process_pdf(file_path)
|
153 |
+
elif mime_type in ["application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel"]:
|
154 |
+
content = self._process_excel(file_path)
|
155 |
+
elif mime_type and ("text" in mime_type or "csv" in mime_type):
|
156 |
+
content = self._process_text(file_path)
|
157 |
+
else:
|
158 |
+
return f"Unsupported file type for analysis: {mime_type}. Only PDF, Excel, and text/CSV files are supported."
|
159 |
|
160 |
+
if mime_type in ["application/pdf", "text/plain", "text/csv"]:
|
161 |
+
add_document_to_vector_store(
|
162 |
+
content=content,
|
163 |
+
source=f"file:{os.path.basename(file_path)}",
|
164 |
+
metadata={"file_path": file_path, "mime_type": mime_type}
|
165 |
+
)
|
166 |
+
|
167 |
+
return content
|
168 |
|
169 |
+
except Exception as e:
|
170 |
+
logger.error(f"File analysis error for '{file_path}': {e}")
|
171 |
+
return f"File analysis error: {str(e)}"
|
172 |
+
|
173 |
+
def _process_pdf(self, path: str) -> str:
|
174 |
+
loader = PyPDFLoader(path)
|
175 |
+
docs = loader.load()
|
176 |
+
content = "\n\n".join([doc.page_content for doc in docs])
|
177 |
+
if len(content) > 8000:
|
178 |
+
logger.warning(f"PDF content truncated from {len(content)} to 8000 characters for {path}")
|
179 |
+
return content[:8000] + "\n... [Content truncated]"
|
180 |
+
return content
|
181 |
+
|
182 |
+
def _process_excel(self, path: str) -> str:
|
183 |
+
df = pd.read_excel(path)
|
184 |
+
info = BytesIO()
|
185 |
+
df.info(buf=info)
|
186 |
+
info_str = info.getvalue().decode('utf-8')
|
187 |
+
|
188 |
+
return (f"Excel file loaded. First 10 rows:\n{df.head(10).to_markdown()}\n\n"
|
189 |
+
f"DataFrame Info:\n{info_str}")
|
190 |
+
|
191 |
+
def _process_text(self, path: str) -> str:
|
192 |
+
with open(path, 'r', encoding='utf-8') as f:
|
193 |
+
content = f.read()
|
194 |
+
if len(content) > 8000:
|
195 |
+
logger.warning(f"Text file content truncated from {len(content)} to 8000 characters for {path}")
|
196 |
+
return content[:8000] + "\n... [Content truncated]"
|
197 |
+
return content
|
198 |
+
|
199 |
+
class VideoTranscriptionTool(Tool):
|
200 |
+
"""Enhanced YouTube transcription with multilingual support and better output. Transcribed content is added to vector store."""
|
201 |
+
name = "transcript_video"
|
202 |
+
description = "Fetch YouTube video transcripts with optional timestamps. Supports English, French, Spanish, German. Transcribed text is indexed for future retrieval."
|
203 |
inputs = {
|
204 |
+
"url": {"type": "string", "description": "YouTube URL or ID"},
|
205 |
+
"include_timestamps": {"type": "boolean", "description": "Include timestamps? (default: False)"}
|
|
|
|
|
206 |
}
|
207 |
output_type = "string"
|
208 |
|
209 |
+
def forward(self, url: str, include_timestamps: bool = False) -> str:
|
210 |
+
try:
|
211 |
+
video_id = extract_youtube_id(url)
|
212 |
+
if not video_id:
|
213 |
+
return "Invalid YouTube URL or ID format. Please provide a valid YouTube URL or an 11-character video ID."
|
214 |
+
|
215 |
+
logger.info(f"Attempting to transcribe video ID: {video_id}")
|
216 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(
|
217 |
+
video_id,
|
218 |
+
languages=['en', 'fr', 'es', 'de']
|
219 |
+
)
|
220 |
+
|
221 |
+
if not transcript_list:
|
222 |
+
return f"No transcript found for video ID: {video_id} in supported languages (en, fr, es, de)."
|
223 |
+
|
224 |
+
full_transcript_text = " ".join(seg['text'] for seg in transcript_list)
|
225 |
+
|
226 |
+
add_document_to_vector_store(
|
227 |
+
content=full_transcript_text,
|
228 |
+
source=f"youtube_video:{video_id}",
|
229 |
+
metadata={"video_url": url}
|
230 |
+
)
|
231 |
|
232 |
+
if include_timestamps:
|
233 |
+
formatted_transcript = "\n".join(
|
234 |
+
f"[{int(seg['start']//60):02d}:{int(seg['start']%60):02d}] {seg['text']}"
|
235 |
+
for seg in transcript_list
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
formatted_transcript = full_transcript_text
|
239 |
+
|
240 |
+
return formatted_transcript
|
241 |
+
except Exception as e:
|
242 |
+
logger.error(f"Transcription error for '{url}': {e}")
|
243 |
+
return f"Transcription error: {str(e)}. This might be due to no available transcript or an unsupported video."
|
244 |
|
245 |
+
class DataAnalysisTool(Tool):
|
246 |
+
"""Perform data analysis using pandas on structured data (CSV/Excel)"""
|
247 |
+
name = "data_analysis"
|
248 |
+
description = "Analyze CSV/Excel data using pandas operations. Supported operations: 'describe', 'groupby:column:aggfunc' (e.g., 'groupby:Category:mean'). Outputs are NOT added to vector store."
|
249 |
inputs = {
|
250 |
+
"file_path": {"type": "string", "description": "Path to the local data file (CSV or Excel)"},
|
251 |
+
"operation": {"type": "string", "description": "Pandas operation (e.g., 'describe', 'groupby:column_name:agg_function')"}
|
|
|
|
|
252 |
}
|
253 |
output_type = "string"
|
254 |
|
255 |
+
def forward(self, file_path: str, operation: str) -> str:
|
256 |
+
if not os.path.exists(file_path):
|
257 |
+
return f"File not found: {file_path}"
|
258 |
+
|
259 |
try:
|
260 |
+
if file_path.endswith('.csv'):
|
261 |
+
df = pd.read_csv(file_path)
|
262 |
+
elif file_path.endswith('.xlsx') or file_path.endswith('.xls'):
|
263 |
+
df = pd.read_excel(file_path)
|
264 |
+
else:
|
265 |
+
return "Unsupported file format for data analysis. Please provide a .csv or .xlsx file."
|
266 |
+
|
267 |
+
logger.info(f"Performing data analysis operation '{operation}' on {file_path}")
|
268 |
+
|
269 |
+
if operation == "describe":
|
270 |
+
return "Descriptive Statistics:\n" + str(df.describe())
|
271 |
+
elif operation.startswith("groupby:"):
|
272 |
+
parts = operation.split(":")
|
273 |
+
if len(parts) == 3:
|
274 |
+
_, col, agg = parts
|
275 |
+
if col not in df.columns:
|
276 |
+
return f"Column '{col}' not found in the DataFrame."
|
277 |
+
try:
|
278 |
+
result = df.groupby(col).agg(agg)
|
279 |
+
return f"Groupby operation '{agg}' on column '{col}':\n" + str(result)
|
280 |
+
except Exception as agg_e:
|
281 |
+
return f"Error performing aggregation '{agg}' on column '{col}': {str(agg_e)}"
|
282 |
+
else:
|
283 |
+
return "Invalid 'groupby' operation format. Use 'groupby:column_name:agg_function'."
|
284 |
+
else:
|
285 |
+
return "Unsupported operation. Try: 'describe' or 'groupby:column_name:agg_function'."
|
286 |
except Exception as e:
|
287 |
+
logger.error(f"Data analysis error for '{file_path}' with operation '{operation}': {e}")
|
288 |
+
return f"Data analysis error: {str(e)}. Please check file content and operation."
|
|
|
289 |
|
290 |
+
class RetrievalTool(Tool):
|
|
|
291 |
"""
|
292 |
+
Retrieves relevant information from the in-memory vector store based on a query.
|
293 |
+
This tool allows the agent to access previously processed documents and transcripts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
"""
|
295 |
+
name = "retrieve_from_vector_store"
|
296 |
+
description = "Search for relevant information within previously processed documents and transcripts using a semantic query. Returns top K relevant chunks."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
inputs = {
|
298 |
+
"query": {"type": "string", "description": "The semantic query to search the vector store."},
|
299 |
+
"k": {"type": "integer", "description": "Number of top results to retrieve (default: 3)", "default": 3}
|
300 |
}
|
301 |
output_type = "string"
|
302 |
|
303 |
+
def forward(self, query: str, k: int = 3) -> str:
|
304 |
+
if vectorstore is None:
|
305 |
+
return "Vector store is not initialized. No documents available for retrieval."
|
306 |
+
|
307 |
+
try:
|
308 |
+
logger.info(f"Retrieving {k} chunks from DocArrayInMemorySearch for query: {query}")
|
309 |
+
retrieved_docs = vectorstore.similarity_search(query, k=k)
|
310 |
+
|
311 |
+
if not retrieved_docs:
|
312 |
+
return "No relevant information found in the vector store for this query."
|
313 |
+
|
314 |
+
formatted_results = []
|
315 |
+
for i, doc in enumerate(retrieved_docs):
|
316 |
+
source = doc.metadata.get('source', 'Unknown Source')
|
317 |
+
title = doc.metadata.get('title', 'N/A')
|
318 |
+
chunk_index = doc.metadata.get('chunk_index', 'N/A')
|
319 |
+
formatted_results.append(
|
320 |
+
f"--- Retrieved Document Chunk {i+1} ---\n"
|
321 |
+
f"Source: {source} (Chunk: {chunk_index})\n"
|
322 |
+
f"Title: {title}\n"
|
323 |
+
f"Content: {doc.page_content}\n"
|
324 |
+
)
|
325 |
+
return "\n\n".join(formatted_results)
|
326 |
+
except Exception as e:
|
327 |
+
logger.error(f"Error retrieving from vector store for query '{query}': {e}")
|
328 |
+
return f"Error retrieving from vector store: {str(e)}"
|
329 |
|
330 |
+
class ChessAnalysisAPITool(Tool):
|
331 |
+
"""
|
332 |
+
Analyzes a chess position provided in FEN format using a remote chess engine API (chess-api.com).
|
333 |
+
"""
|
334 |
+
name = "analyze_chess_position_api"
|
335 |
+
description = (
|
336 |
+
"Analyze a chess position provided in FEN (Forsyth-Edwards Notation) format using an online engine. "
|
337 |
+
"Returns the best move in algebraic notation for the current player, along with evaluation."
|
338 |
+
"Note: This tool cannot interpret chess positions directly from images. "
|
339 |
+
"The FEN string must be provided by the user."
|
340 |
+
)
|
341 |
+
inputs = {
|
342 |
+
"fen_string": {"type": "string", "description": "The chess position in FEN format. Example: 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'"},
|
343 |
+
"depth": {"type": "integer", "description": "The analysis depth for the chess engine (higher means better, but slower; max ~18 for this API; default: 15)", "default": 15}
|
344 |
+
}
|
345 |
+
output_type = "string"
|
346 |
|
347 |
+
def forward(self, fen_string: str, depth: int = 15) -> str:
|
348 |
+
actual_depth = min(depth, 18)
|
349 |
+
|
350 |
try:
|
351 |
+
logger.info(f"Analyzing FEN: {fen_string} at depth {actual_depth} using chess-api.com.")
|
352 |
+
|
353 |
+
response = requests.post(
|
354 |
+
"https://chess-api.com/v1",
|
355 |
+
json={"fen": fen_string, "depth": actual_depth}
|
356 |
+
)
|
357 |
+
response.raise_for_status()
|
358 |
+
data = response.json()
|
359 |
+
|
360 |
+
if data.get("type") == "bestmove":
|
361 |
+
move_san = data.get("san", data.get("move"))
|
362 |
+
evaluation = data.get("eval")
|
363 |
+
mate_in_moves = data.get("mate")
|
364 |
+
|
365 |
+
result = f"Best move: **{move_san}** (UCI: {data.get('move')})\n"
|
366 |
+
|
367 |
+
if mate_in_moves is not None:
|
368 |
+
player_to_move = "White" if data.get("turn") == 'w' else "Black"
|
369 |
+
result += f"Forced mate for {player_to_move} in {abs(mate_in_moves)} moves.\n"
|
370 |
+
elif evaluation is not None:
|
371 |
+
eval_str = ""
|
372 |
+
if evaluation >= 1000:
|
373 |
+
eval_str = "Decisive advantage for White"
|
374 |
+
elif evaluation <= -1000:
|
375 |
+
eval_str = "Decisive advantage for Black"
|
376 |
+
elif evaluation > 0:
|
377 |
+
eval_str = f"White is up by {evaluation} centipawns"
|
378 |
+
elif evaluation < 0:
|
379 |
+
eval_str = f"Black is up by {abs(evaluation)} centipawns"
|
380 |
+
else:
|
381 |
+
eval_str = "Even position"
|
382 |
+
result += f"Evaluation: {eval_str} (Depth: {data.get('depth')})\n"
|
383 |
+
|
384 |
+
result += "(Source: chess-api.com - Stockfish 17 NNUE)"
|
385 |
+
return result
|
386 |
else:
|
387 |
+
return f"Chess API response: {data.get('text', 'No best move found or error.')}"
|
388 |
|
389 |
+
except requests.exceptions.RequestException as e:
|
390 |
+
logger.error(f"Error communicating with remote chess analysis API for FEN '{fen_string}': {e}")
|
391 |
+
return f"Error contacting remote chess analysis API: {str(e)}. Please try again later."
|
392 |
except Exception as e:
|
393 |
+
logger.error(f"An unexpected error occurred during remote chess analysis for FEN '{fen_string}': {e}")
|
394 |
+
return f"An unexpected error occurred during chess analysis: {str(e)}"
|
395 |
|
396 |
+
# --- Agent Initialization ---
|
397 |
class BasicAgent:
|
398 |
def __init__(self):
|
399 |
+
self.model = HfApiModel(
|
400 |
+
temperature=0.0,
|
401 |
+
os.environ.get("HF_API_TOKEN"),
|
402 |
+
max_tokens=2000
|
403 |
)
|
404 |
+
|
405 |
+
self.tools = self._initialize_tools()
|
406 |
+
self.agent = self._create_agent()
|
407 |
+
|
408 |
+
def _initialize_tools(self) -> list:
|
409 |
+
"""Initialize all tools with enhanced capabilities"""
|
410 |
+
base_tools = [
|
411 |
+
DuckDuckGoSearchTool(),
|
412 |
+
WikiSearchTool(),
|
413 |
+
VisitWebpageTool(),
|
414 |
+
SpeechToTextTool(),
|
415 |
+
FinalAnswerTool(),
|
416 |
+
VideoTranscriptionTool(),
|
417 |
+
FileAnalysisTool(),
|
418 |
+
DataAnalysisTool(),
|
419 |
+
self._create_excel_download_tool(),
|
420 |
+
self._create_keywords_tool(),
|
421 |
+
ChessAnalysisAPITool(),
|
422 |
+
]
|
423 |
+
|
424 |
+
if vectorstore and embeddings:
|
425 |
+
logger.info("Adding RetrievalTool to the agent's tools.")
|
426 |
+
base_tools.append(RetrievalTool())
|
427 |
+
else:
|
428 |
+
logger.warning("RetrievalTool not added because vector store or embeddings are not initialized.")
|
429 |
|
430 |
+
return base_tools
|
431 |
+
|
432 |
+
def _create_excel_download_tool(self):
|
433 |
+
"""Tool to download and parse Excel files from a specific URL"""
|
434 |
+
@tool
|
435 |
+
def download_and_parse_excel(task_id: str) -> dict:
|
436 |
+
"""
|
437 |
+
Downloads an Excel file from a predefined URL using a task_id and parses its content.
|
438 |
+
Returns a dictionary with status and data (first 10 rows), columns, and shape.
|
439 |
+
"""
|
440 |
+
try:
|
441 |
+
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
442 |
+
logger.info(f"Attempting to download Excel from: {url}")
|
443 |
+
response = requests.get(url, timeout=60)
|
444 |
+
response.raise_for_status()
|
445 |
+
|
446 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
447 |
+
tmp.write(response.content)
|
448 |
+
temp_file_path = tmp.name
|
449 |
+
|
450 |
+
df = pd.read_excel(temp_file_path)
|
451 |
+
os.unlink(temp_file_path)
|
452 |
+
|
453 |
+
logger.info(f"Successfully downloaded and parsed Excel for task_id: {task_id}")
|
454 |
+
return {
|
455 |
+
"task_id": task_id,
|
456 |
+
"data_sample": df.head(10).to_dict(orient="records"),
|
457 |
+
"status": "Success",
|
458 |
+
"columns": df.columns.tolist(),
|
459 |
+
"shape": df.shape
|
460 |
+
}
|
461 |
+
except requests.exceptions.RequestException as req_err:
|
462 |
+
logger.error(f"Network or HTTP error downloading Excel for task_id '{task_id}': {req_err}")
|
463 |
+
return {"status": f"Download error: {str(req_err)}"}
|
464 |
+
except Exception as e:
|
465 |
+
logger.error(f"Error parsing Excel for task_id '{task_id}': {e}")
|
466 |
+
return {"status": f"Parsing error: {str(e)}"}
|
467 |
+
return download_and_parse_excel
|
468 |
+
|
469 |
+
def _create_keywords_tool(self):
|
470 |
+
"""Keywords extractor with TF-IDF like scoring (basic frequency for now)"""
|
471 |
+
@tool
|
472 |
+
def extract_keywords(text: str, top_n: int = 5) -> list:
|
473 |
+
"""
|
474 |
+
Extracts the most frequent keywords from a given text, excluding common stopwords.
|
475 |
+
Args:
|
476 |
+
text (str): The input text to extract keywords from.
|
477 |
+
top_n (int): The number of top keywords to return.
|
478 |
+
Returns:
|
479 |
+
list: A list of the most frequent keywords.
|
480 |
+
"""
|
481 |
+
if not text:
|
482 |
+
return []
|
483 |
+
|
484 |
+
stopwords = set([
|
485 |
+
"a", "an", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it",
|
486 |
+
"no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these",
|
487 |
+
"they", "this", "to", "was", "will", "with", "he", "she", "it's", "i", "we", "you", "my",
|
488 |
+
"your", "our", "us", "him", "her", "his", "hers", "its", "them", "their", "what", "when",
|
489 |
+
"where", "why", "how", "which", "who", "whom", "can", "could", "would", "should", "may",
|
490 |
+
"might", "must", "have", "has", "had", "do", "does", "did", "am", "are", "is", "were", "been",
|
491 |
+
"being", "from", "up", "down", "out", "off", "over", "under", "again", "further", "then",
|
492 |
+
"once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few",
|
493 |
+
"more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so",
|
494 |
+
"than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now"
|
495 |
+
])
|
496 |
+
|
497 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
498 |
+
filtered = [w for w in words if w not in stopwords and len(w) > 2]
|
499 |
+
counter = Counter(filtered)
|
500 |
+
return [word for word, _ in counter.most_common(top_n)]
|
501 |
+
return extract_keywords
|
502 |
+
|
503 |
+
def _create_agent(self) -> CodeAgent:
|
504 |
+
"""Create agent with improved system prompt"""
|
505 |
+
system_prompt = """
|
506 |
You are an advanced, helpful, and highly analytical research assistant. Your goal is to provide accurate, comprehensive, and well-structured answers to user queries, leveraging all available tools efficiently.
|
507 |
|
508 |
**Follow this robust process:**
|
|
|
510 |
1. **Understand the User's Need:** Carefully analyze the user's question, including any attached files or specific requests (e.g., "summarize," "analyze data," "find facts").
|
511 |
2. **Formulate a Detailed Plan:** Before acting, create a clear, step-by-step plan. This plan should outline:
|
512 |
* What information needs to be gathered.
|
513 |
+
* Which tools are most appropriate for each step.
|
514 |
+
* Use `retrieve_from_vector_store` first if the query seems to be related to previously processed information (e.g., "What did we learn about X from the uploaded document?").
|
515 |
+
* Use `duckduckgo_search` for general web search.
|
516 |
+
* Use `wiki_search` for encyclopedic facts.
|
517 |
+
* Use `transcript_video` for YouTube video content.
|
518 |
+
* Use `file_analysis` to inspect content of local files.
|
519 |
+
* Use `data_analysis` for structured analysis of CSV/Excel files.
|
520 |
+
* Use `analyze_chess_position_api` if the user provides a FEN string for a chess position and asks for the best move.
|
521 |
* How you will combine information from different sources.
|
522 |
* How you will verify or synthesize the findings.
|
523 |
3. **Execute the Plan Using Tools:** Call the necessary tools, providing clear and correct arguments. If a tool fails, try to understand why and adapt your plan (e.g., try a different search query or tool).
|
|
|
528 |
* If the answer is a single number, provide only the number.
|
529 |
* If the answer is a list, provide comma-separated values.
|
530 |
* For complex answers, use structured formats like bullet points or JSON where appropriate to enhance readability.
|
531 |
+
* **Crucially, always include sources or references (e.g., URLs, Wikipedia titles, file names, "Internal Knowledge Base", "Remote Chess API") where you obtained the information.** This builds trust and allows for verification.
|
532 |
* If you used `file_analysis` or `data_analysis` tools on an uploaded file, explicitly state that you analyzed the provided file.
|
533 |
|
534 |
**Important Considerations:**
|
535 |
+
* **Prioritize:** If the query involves a specific file, start by analyzing that file if appropriate. If the query seems to refer to previously processed data, try `retrieve_from_vector_store` first.
|
536 |
* **Limitations:** If you cannot answer a question with the available tools, state that clearly.
|
537 |
* **Conciseness:** Be as concise as possible while providing an accurate answer.
|
538 |
"""
|
539 |
+
agent = CodeAgent(
|
540 |
+
model=self.model,
|
541 |
+
tools=self.tools,
|
542 |
+
add_base_tools=True,
|
543 |
+
max_steps=15 # <--- Added this to limit agent's internal reasoning/tool-use steps
|
544 |
)
|
545 |
+
agent.prompt_templates["system_prompt"] = system_prompt
|
546 |
+
return agent
|
547 |
|
548 |
def __call__(self, question: str) -> str:
|
549 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
550 |
answer = self.agent.run(question)
|
551 |
print(f"Agent returning answer: {answer}")
|
552 |
return answer
|
553 |
+
|
554 |
+
logger.info(f"Agent received question (first 50 chars): {question[:50]}...")
|
555 |
+
global vectorstore
|
556 |
+
if embeddings:
|
557 |
+
vectorstore = DocArrayInMemorySearch(embedding_function=embeddings)
|
558 |
+
logger.info("DocArrayInMemorySearch re-initialized for new session.")
|
559 |
+
else:
|
560 |
+
logger.warning("Embeddings not initialized, cannot re-initialize DocArrayInMemorySearch.")
|
561 |
+
return "Error: Embedding model not loaded, cannot process request."
|
562 |
+
|
563 |
+
# --- Implement a timeout for the agent's run method ---
|
564 |
+
# Max time in seconds for the agent to respond
|
565 |
+
AGENT_TIMEOUT_SECONDS = 120
|
566 |
+
|
567 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
568 |
+
future = executor.submit(self.agent.run, question)
|
569 |
+
try:
|
570 |
+
response = future.result(timeout=AGENT_TIMEOUT_SECONDS)
|
571 |
+
except concurrent.futures.TimeoutError:
|
572 |
+
logger.warning(f"Agent execution timed out after {AGENT_TIMEOUT_SECONDS} seconds for question: {question[:100]}...")
|
573 |
+
future.cancel() # Cancel the future if it's still running
|
574 |
+
return "Error: The agent took too long to respond and timed out. Please try again with a simpler query or check the input."
|
575 |
+
except Exception as e:
|
576 |
+
# Catch any other exceptions that might occur during agent.run
|
577 |
+
logger.error(f"Agent execution failed during run for question '{question[:100]}': {str(e)}", exc_info=True)
|
578 |
+
return f"Error processing your request: {str(e)}. Please try again or rephrase your question."
|
579 |
+
|
580 |
+
logger.info(f"Response generated successfully for question: {question[:200]}")
|
581 |
+
return response
|
582 |
+
except Exception as e:
|
583 |
+
# This outer catch is for issues before agent.run is called or unhandled by the ThreadPoolExecutor
|
584 |
+
logger.error(f"Agent setup or execution failed (outer catch) for question '{question[:100]}': {str(e)}", exc_info=True)
|
585 |
+
return f"Error processing your request: {str(e)}. Please try again or rephrase your question."
|
586 |
+
|
587 |
+
|
588 |
|
589 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
590 |
"""
|