Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -3,24 +3,19 @@
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
from langgraph.graph import START, StateGraph, MessagesState
|
6 |
-
from langgraph.prebuilt import tools_condition
|
|
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
-
from langchain_community.document_loaders import WikipediaLoader
|
|
|
12 |
from langchain_community.vectorstores import SupabaseVectorStore
|
13 |
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
from langchain_core.tools import tool
|
15 |
from langchain.tools.retriever import create_retriever_tool
|
16 |
from supabase.client import Client, create_client
|
17 |
-
from typing import TypedDict, List, Annotated
|
18 |
-
from langchain.agents.agent_toolkits import create_retriever_tool
|
19 |
-
from langchain_community.document_loaders import TextLoader
|
20 |
-
#from langchain_community.vectorstores import FAISS
|
21 |
-
from langchain_openai import OpenAIEmbeddings
|
22 |
-
from langchain_text_splitters import CharacterTextSplitter
|
23 |
-
from supabase.client import Client, create_client
|
24 |
|
25 |
|
26 |
load_dotenv()
|
@@ -128,7 +123,6 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
128 |
sys_msg = SystemMessage(content=system_prompt)
|
129 |
|
130 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
131 |
-
|
132 |
supabase: Client = create_client(
|
133 |
os.environ.get("SUPABASE_URL"),
|
134 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
@@ -205,4 +199,14 @@ def build_graph(provider: str = "google"):
|
|
205 |
builder.add_edge("tools", "assistant")
|
206 |
|
207 |
# Compile graph
|
208 |
-
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
from langgraph.graph import START, StateGraph, MessagesState
|
6 |
+
from langgraph.prebuilt import tools_condition
|
7 |
+
from langgraph.prebuilt import ToolNode
|
8 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
11 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
12 |
+
from langchain_community.document_loaders import WikipediaLoader
|
13 |
+
from langchain_community.document_loaders import ArxivLoader
|
14 |
from langchain_community.vectorstores import SupabaseVectorStore
|
15 |
from langchain_core.messages import SystemMessage, HumanMessage
|
16 |
from langchain_core.tools import tool
|
17 |
from langchain.tools.retriever import create_retriever_tool
|
18 |
from supabase.client import Client, create_client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
load_dotenv()
|
|
|
123 |
sys_msg = SystemMessage(content=system_prompt)
|
124 |
|
125 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
|
|
126 |
supabase: Client = create_client(
|
127 |
os.environ.get("SUPABASE_URL"),
|
128 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
|
|
199 |
builder.add_edge("tools", "assistant")
|
200 |
|
201 |
# Compile graph
|
202 |
+
return builder.compile()
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
206 |
+
# Build the graph
|
207 |
+
graph = build_graph(provider="groq")
|
208 |
+
# Run the graph
|
209 |
+
messages = [HumanMessage(content=question)]
|
210 |
+
messages = graph.invoke({"messages": messages})
|
211 |
+
for m in messages["messages"]:
|
212 |
+
m.pretty_print()
|