Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,360 +1,33 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from dotenv import load_dotenv
|
|
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import tempfile
|
9 |
-
from smolagents import CodeAgent, OpenAIServerModel, tool
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
from openai import OpenAI
|
12 |
-
from markdownify import markdownify
|
13 |
-
from requests.exceptions import RequestException
|
14 |
-
|
15 |
-
from typing import Optional, List
|
16 |
-
from langchain_core.tools import BaseTool, tool
|
17 |
-
#from langchain_community.tools import DuckDuckGoSearchResults
|
18 |
-
#from langchain_experimental.tools import PythonREPLTool
|
19 |
-
import requests
|
20 |
-
from bs4 import BeautifulSoup
|
21 |
-
import markdownify
|
22 |
-
import pandas as pd
|
23 |
-
from io import BytesIO
|
24 |
-
#import pytesseract
|
25 |
-
from PIL import Image
|
26 |
-
from youtube_transcript_api import YouTubeTranscriptApi
|
27 |
-
import re
|
28 |
|
29 |
-
# Load environment variables
|
30 |
load_dotenv()
|
31 |
|
|
|
32 |
# --- Constants ---
|
33 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
34 |
|
35 |
-
#
|
36 |
-
model = OpenAIServerModel(
|
37 |
-
model_id="o4-mini-2025-04-16",
|
38 |
-
api_base="https://api.openai.com/v1",
|
39 |
-
api_key=os.getenv("openai"),
|
40 |
-
)
|
41 |
-
|
42 |
-
# Initialize OpenAI client
|
43 |
-
openAiClient = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
44 |
-
|
45 |
-
@tool
|
46 |
-
def arvix_search(query: str) -> str:
|
47 |
-
"""Search Arxiv for a query and return maximum 3 result.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
query: The search query."""
|
51 |
-
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
52 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
53 |
-
[
|
54 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
55 |
-
for doc in search_docs
|
56 |
-
])
|
57 |
-
return {"arvix_results": formatted_search_docs}
|
58 |
-
|
59 |
-
|
60 |
-
@tool
|
61 |
-
def analyze_image(image_url: str) -> str:
|
62 |
-
"""
|
63 |
-
Analyze an image using OpenAI's vision model and return a description.
|
64 |
-
|
65 |
-
Args:
|
66 |
-
image_url: URL of the image to analyze
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
A detailed description of the image
|
70 |
-
"""
|
71 |
-
api_key = os.getenv("OPENAI_API_KEY")
|
72 |
-
if not api_key:
|
73 |
-
return "Error: OpenAI API key not set in environment variables"
|
74 |
-
|
75 |
-
# Download the image
|
76 |
-
try:
|
77 |
-
response = requests.get(image_url)
|
78 |
-
response.raise_for_status()
|
79 |
-
image_data = response.content
|
80 |
-
base64_image = base64.b64encode(image_data).decode('utf-8')
|
81 |
-
except Exception as e:
|
82 |
-
return f"Error downloading image: {str(e)}"
|
83 |
-
|
84 |
-
# Call OpenAI API
|
85 |
-
api_url = "https://api.openai.com/v1/chat/completions"
|
86 |
-
headers = {
|
87 |
-
"Content-Type": "application/json",
|
88 |
-
"Authorization": f"Bearer {api_key}"
|
89 |
-
}
|
90 |
-
|
91 |
-
payload = {
|
92 |
-
"model": "gpt-4.1-2025-04-14",
|
93 |
-
"messages": [
|
94 |
-
{
|
95 |
-
"role": "user",
|
96 |
-
"content": [
|
97 |
-
{
|
98 |
-
"type": "text",
|
99 |
-
"text": "Describe this image in detail. Include any text, objects, people, actions, and overall context."
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"type": "image_url",
|
103 |
-
"image_url": {
|
104 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
105 |
-
}
|
106 |
-
}
|
107 |
-
]
|
108 |
-
}
|
109 |
-
],
|
110 |
-
"max_tokens": 500
|
111 |
-
}
|
112 |
-
|
113 |
-
try:
|
114 |
-
response = requests.post(api_url, headers=headers, json=payload)
|
115 |
-
response.raise_for_status()
|
116 |
-
data = response.json()
|
117 |
-
|
118 |
-
if "choices" in data and len(data["choices"]) > 0:
|
119 |
-
return data["choices"][0]["message"]["content"]
|
120 |
-
else:
|
121 |
-
return "No description generated"
|
122 |
-
except Exception as e:
|
123 |
-
return f"Error analyzing image: {str(e)}"
|
124 |
-
|
125 |
-
@tool
|
126 |
-
def analyze_sound(audio_url: str) -> str:
|
127 |
-
"""
|
128 |
-
Transcribe an audio file using OpenAI's Whisper model.
|
129 |
-
|
130 |
-
Args:
|
131 |
-
audio_url: the url of the audio
|
132 |
-
|
133 |
-
Returns:
|
134 |
-
A transcription of the audio content
|
135 |
-
"""
|
136 |
-
api_key = os.getenv("OPENAI_API_KEY")
|
137 |
-
if not api_key:
|
138 |
-
return "Error: OpenAI API key not set in environment variables"
|
139 |
-
|
140 |
-
# Download the audio file
|
141 |
-
try:
|
142 |
-
response = requests.get(audio_url)
|
143 |
-
response.raise_for_status()
|
144 |
-
|
145 |
-
import tempfile
|
146 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
147 |
-
temp_file.write(response.content)
|
148 |
-
temp_file_path = temp_file.name
|
149 |
-
|
150 |
-
audio_file= open(temp_file_path, "rb")
|
151 |
-
|
152 |
-
except Exception as e:
|
153 |
-
return f"Error downloading audio: {str(e)}"
|
154 |
-
|
155 |
-
try:
|
156 |
-
transcription = openAiClient.audio.transcriptions.create(
|
157 |
-
model="gpt-4o-transcribe",
|
158 |
-
file=audio_file
|
159 |
-
)
|
160 |
-
return transcription.text
|
161 |
-
except Exception as e:
|
162 |
-
return f"Error transcribing audio: {str(e)}"
|
163 |
-
|
164 |
-
@tool
|
165 |
-
def analyze_excel(excel_url: str) -> str:
|
166 |
-
"""
|
167 |
-
Process an Excel file and convert it to a text-based format.
|
168 |
-
|
169 |
-
Args:
|
170 |
-
excel_url: URL of the Excel file to analyze
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
A text representation of the Excel data
|
174 |
-
"""
|
175 |
-
try:
|
176 |
-
# Download the Excel file
|
177 |
-
response = requests.get(excel_url)
|
178 |
-
response.raise_for_status()
|
179 |
-
|
180 |
-
# Save to a temporary file
|
181 |
-
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
|
182 |
-
temp_file.write(response.content)
|
183 |
-
temp_file_path = temp_file.name
|
184 |
-
|
185 |
-
# Read the Excel file
|
186 |
-
df = pd.read_excel(temp_file_path)
|
187 |
-
|
188 |
-
# Convert to a text representation
|
189 |
-
result = []
|
190 |
-
|
191 |
-
# Add sheet information
|
192 |
-
result.append(f"Excel file with {len(df)} rows and {len(df.columns)} columns")
|
193 |
-
|
194 |
-
# Add column names
|
195 |
-
result.append("\nColumns:")
|
196 |
-
for i, col in enumerate(df.columns, 1):
|
197 |
-
result.append(f"{i}. {col}")
|
198 |
-
|
199 |
-
# Add data summary
|
200 |
-
result.append("\nData Summary:")
|
201 |
-
result.append(df.describe().to_string())
|
202 |
-
|
203 |
-
# Add first few rows as a sample
|
204 |
-
result.append("\nFirst 5 rows:")
|
205 |
-
result.append(df.head().to_string())
|
206 |
-
|
207 |
-
# Clean up
|
208 |
-
os.unlink(temp_file_path)
|
209 |
-
|
210 |
-
return "\n".join(result)
|
211 |
-
except Exception as e:
|
212 |
-
return f"Error processing Excel file: {str(e)}"
|
213 |
-
|
214 |
-
@tool
|
215 |
-
def analyze_text(text_url: str) -> str:
|
216 |
-
"""
|
217 |
-
Process a text file and return its contents.
|
218 |
-
|
219 |
-
Args:
|
220 |
-
text_url: URL of the text file to analyze
|
221 |
-
|
222 |
-
Returns:
|
223 |
-
The contents of the text file
|
224 |
-
"""
|
225 |
-
try:
|
226 |
-
# Download the text file
|
227 |
-
response = requests.get(text_url)
|
228 |
-
response.raise_for_status()
|
229 |
-
|
230 |
-
# Get the text content
|
231 |
-
text_content = response.text
|
232 |
-
|
233 |
-
# For very long files, truncate with a note
|
234 |
-
if len(text_content) > 10000:
|
235 |
-
return f"Text file content (truncated to first 10000 characters):\n\n{text_content[:10000]}\n\n... [content truncated]"
|
236 |
-
|
237 |
-
return f"Text file content:\n\n{text_content}"
|
238 |
-
except Exception as e:
|
239 |
-
return f"Error processing text file: {str(e)}"
|
240 |
-
|
241 |
-
@tool
|
242 |
-
def transcribe_youtube(youtube_url: str) -> str:
|
243 |
-
"""
|
244 |
-
Extract the transcript from a YouTube video.
|
245 |
-
|
246 |
-
Args:
|
247 |
-
youtube_url: URL of the YouTube video
|
248 |
-
|
249 |
-
Returns:
|
250 |
-
The transcript of the video
|
251 |
-
"""
|
252 |
-
try:
|
253 |
-
# Extract video ID from URL
|
254 |
-
import re
|
255 |
-
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
|
256 |
-
if not video_id_match:
|
257 |
-
return "Error: Invalid YouTube URL"
|
258 |
-
|
259 |
-
video_id = video_id_match.group(1)
|
260 |
-
|
261 |
-
# Use youtube_transcript_api to get the transcript
|
262 |
-
from youtube_transcript_api import YouTubeTranscriptApi
|
263 |
-
|
264 |
-
try:
|
265 |
-
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
266 |
-
|
267 |
-
# Combine all transcript segments into a single text
|
268 |
-
full_transcript = ""
|
269 |
-
for segment in transcript_list:
|
270 |
-
full_transcript += segment['text'] + " "
|
271 |
-
|
272 |
-
return f"YouTube Video Transcript:\n\n{full_transcript.strip()}"
|
273 |
-
except Exception as e:
|
274 |
-
return f"Error extracting transcript: {str(e)}"
|
275 |
-
except Exception as e:
|
276 |
-
return f"Error processing YouTube video: {str(e)}"
|
277 |
-
|
278 |
-
|
279 |
-
@tool
|
280 |
-
def process_file(task_id: str, file_name: str) -> str:
|
281 |
-
"""
|
282 |
-
Fetch and process a file based on task_id and file_name.
|
283 |
-
For images, it will analyze them and return a description of the image.
|
284 |
-
For audio files, it will transcribe them.
|
285 |
-
For Excel files, it will convert them to a text format.
|
286 |
-
For text files, it will return the file contents.
|
287 |
-
Other file types can be ignored for this tool.
|
288 |
-
|
289 |
-
Args:
|
290 |
-
task_id: The task ID to fetch the file for
|
291 |
-
file_name: The name of the file to process
|
292 |
-
|
293 |
-
Returns:
|
294 |
-
A description or transcription of the file content
|
295 |
-
"""
|
296 |
-
if not task_id or not file_name:
|
297 |
-
return "Error: task_id and file_name are required"
|
298 |
-
|
299 |
-
# Construct the file URL
|
300 |
-
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
|
301 |
-
|
302 |
-
try:
|
303 |
-
# Fetch the file
|
304 |
-
response = requests.get(file_url)
|
305 |
-
response.raise_for_status()
|
306 |
-
|
307 |
-
# Determine file type
|
308 |
-
mime_type, _ = mimetypes.guess_type(file_name)
|
309 |
-
|
310 |
-
# Process based on file type
|
311 |
-
if mime_type and mime_type.startswith('image/'):
|
312 |
-
# For images, use the analyze_image tool
|
313 |
-
return analyze_image(file_url)
|
314 |
-
elif file_name.lower().endswith('.mp3') or (mime_type and mime_type.startswith('audio/')):
|
315 |
-
# For audio files, use the analyze_sound tool
|
316 |
-
return analyze_sound(file_url)
|
317 |
-
elif file_name.lower().endswith('.xlsx') or (mime_type and mime_type == 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'):
|
318 |
-
# For Excel files, use the analyze_excel tool
|
319 |
-
return analyze_excel(file_url)
|
320 |
-
elif file_name.lower().endswith(('.txt', '.py', '.js', '.html', '.css', '.json', '.md')) or (mime_type and mime_type.startswith('text/')):
|
321 |
-
# For text files, use the analyze_text tool
|
322 |
-
return analyze_text(file_url)
|
323 |
-
else:
|
324 |
-
# For other file types, return basic information
|
325 |
-
return f"File '{file_name}' of type '{mime_type or 'unknown'}' was fetched successfully. Content processing not implemented for this file type."
|
326 |
-
except Exception as e:
|
327 |
-
return f"Error processing file: {str(e)}"
|
328 |
-
|
329 |
|
330 |
class BasicAgent:
|
331 |
-
"""
|
332 |
-
A simple agent that uses smolagents.CodeAgent with multiple specialized tools:
|
333 |
-
- Tavily search tool for web searches
|
334 |
-
- Image analysis tool for processing images
|
335 |
-
- Audio transcription tool for processing sound files
|
336 |
-
- Excel analysis tool for processing spreadsheet data
|
337 |
-
- Text file analysis tool for processing code and text files
|
338 |
-
- YouTube transcription tool for processing video content
|
339 |
-
- File processing tool for handling various file types
|
340 |
-
|
341 |
-
The CodeAgent is instantiated once and reused for each question to reduce overhead.
|
342 |
-
"""
|
343 |
def __init__(self):
|
344 |
print("BasicAgent initialized.")
|
345 |
-
|
346 |
-
self.agent = CodeAgent(tools=[arvix_search,
|
347 |
-
analyze_image,
|
348 |
-
analyze_sound,
|
349 |
-
analyze_excel,
|
350 |
-
analyze_text,
|
351 |
-
transcribe_youtube,
|
352 |
-
process_file], model=model)
|
353 |
|
354 |
def __call__(self, question: str) -> str:
|
355 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
358 |
|
359 |
|
360 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from dotenv import load_dotenv
|
4 |
+
import inspect
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
+
from langchain_core.messages import HumanMessage
|
8 |
+
from agent import build_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
load_dotenv()
|
11 |
|
12 |
+
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
+
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
class BasicAgent:
|
19 |
+
"""A langgraph agent."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def __init__(self):
|
21 |
print("BasicAgent initialized.")
|
22 |
+
self.graph = build_graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
26 |
+
# Wrap the question in a HumanMessage from langchain_core
|
27 |
+
messages = [HumanMessage(content=question)]
|
28 |
+
messages = self.graph.invoke({"messages": messages})
|
29 |
+
answer = messages['messages'][-1].content
|
30 |
+
return answer[14:]
|
31 |
|
32 |
|
33 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|