Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -109,6 +109,130 @@ Answer:"""
|
|
109 |
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
#from smolagents import Tool
|
113 |
#from langchain_community.document_loaders import WikipediaLoader
|
114 |
|
@@ -283,6 +407,12 @@ class BasicAgent:
|
|
283 |
|
284 |
# ✅ New Llama Tool
|
285 |
code_llama_tool = CodeLlamaTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
system_prompt = f"""
|
288 |
You are my general AI assistant. Your task is to answer the question I asked.
|
@@ -301,6 +431,9 @@ If the answer is a comma-separated list, apply the above rules for each element
|
|
301 |
keywords_extract_tool, speech_to_text_tool,
|
302 |
visit_webpage_tool, final_answer_tool,
|
303 |
parse_excel_to_json, video_transcription_tool,
|
|
|
|
|
|
|
304 |
code_llama_tool # 🔧 Add here
|
305 |
],
|
306 |
add_base_tools=True
|
|
|
109 |
|
110 |
|
111 |
|
112 |
+
|
113 |
+
import requests
|
114 |
+
from smolagents import Tool
|
115 |
+
|
116 |
+
class ArxivSearchTool(Tool):
|
117 |
+
name = "arxiv_search"
|
118 |
+
description = "Search Arxiv for papers matching a query and return titles and links."
|
119 |
+
inputs = {
|
120 |
+
"query": {"type": "string", "description": "Search query for Arxiv papers"}
|
121 |
+
}
|
122 |
+
output_type = "string"
|
123 |
+
|
124 |
+
def forward(self, query: str) -> str:
|
125 |
+
url = "http://export.arxiv.org/api/query"
|
126 |
+
params = {
|
127 |
+
"search_query": query,
|
128 |
+
"start": 0,
|
129 |
+
"max_results": 3,
|
130 |
+
"sortBy": "relevance",
|
131 |
+
"sortOrder": "descending"
|
132 |
+
}
|
133 |
+
try:
|
134 |
+
response = requests.get(url, params=params, timeout=10)
|
135 |
+
response.raise_for_status()
|
136 |
+
# Simple parse titles and links (basic, for demo)
|
137 |
+
import xml.etree.ElementTree as ET
|
138 |
+
root = ET.fromstring(response.content)
|
139 |
+
ns = {"atom": "http://www.w3.org/2005/Atom"}
|
140 |
+
|
141 |
+
entries = root.findall("atom:entry", ns)
|
142 |
+
results = []
|
143 |
+
for entry in entries:
|
144 |
+
title = entry.find("atom:title", ns).text.strip().replace('\n', ' ')
|
145 |
+
link = entry.find("atom:id", ns).text.strip()
|
146 |
+
results.append(f"{title}\n{link}")
|
147 |
+
return "\n\n".join(results) if results else "No results found."
|
148 |
+
except Exception as e:
|
149 |
+
return f"Error during Arxiv search: {e}"
|
150 |
+
|
151 |
+
|
152 |
+
from transformers import pipeline
|
153 |
+
from smolagents import Tool
|
154 |
+
from PIL import Image
|
155 |
+
|
156 |
+
class HuggingFaceDocumentQATool(Tool):
|
157 |
+
name = "document_qa"
|
158 |
+
description = "Answer questions from document images (e.g., scanned invoices)."
|
159 |
+
inputs = {
|
160 |
+
"image_path": {"type": "string", "description": "Path to the image file"},
|
161 |
+
"question": {"type": "string", "description": "Question to ask about the document"}
|
162 |
+
}
|
163 |
+
output_type = "string"
|
164 |
+
|
165 |
+
def __init__(self):
|
166 |
+
self.pipeline = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
167 |
+
|
168 |
+
def forward(self, image_path: str, question: str) -> str:
|
169 |
+
image = Image.open(image_path)
|
170 |
+
result = self.pipeline(image, question=question)
|
171 |
+
return result[0]['answer']
|
172 |
+
|
173 |
+
|
174 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering
|
175 |
+
|
176 |
+
class HuggingFaceImageQATool(Tool):
|
177 |
+
name = "image_qa"
|
178 |
+
description = "Answer questions about an image."
|
179 |
+
inputs = {
|
180 |
+
"image_path": {"type": "string", "description": "Path to image"},
|
181 |
+
"question": {"type": "string", "description": "Question about the image"}
|
182 |
+
}
|
183 |
+
output_type = "string"
|
184 |
+
|
185 |
+
def __init__(self):
|
186 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
187 |
+
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
188 |
+
|
189 |
+
def forward(self, image_path: str, question: str) -> str:
|
190 |
+
image = Image.open(image_path)
|
191 |
+
inputs = self.processor(image, question, return_tensors="pt")
|
192 |
+
out = self.model.generate(**inputs)
|
193 |
+
return self.processor.decode(out[0], skip_special_tokens=True)
|
194 |
+
|
195 |
+
|
196 |
+
from transformers import pipeline
|
197 |
+
|
198 |
+
class HuggingFaceTranslationTool(Tool):
|
199 |
+
name = "translate"
|
200 |
+
description = "Translate text from English to another language."
|
201 |
+
inputs = {
|
202 |
+
"text": {"type": "string", "description": "Text to translate"}
|
203 |
+
}
|
204 |
+
output_type = "string"
|
205 |
+
|
206 |
+
def __init__(self):
|
207 |
+
self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
|
208 |
+
|
209 |
+
def forward(self, text: str) -> str:
|
210 |
+
return self.translator(text)[0]["translation_text"]
|
211 |
+
|
212 |
+
|
213 |
+
import io
|
214 |
+
import contextlib
|
215 |
+
|
216 |
+
class PythonCodeExecutionTool(Tool):
|
217 |
+
name = "run_python"
|
218 |
+
description = "Execute Python code and return result."
|
219 |
+
inputs = {
|
220 |
+
"code": {"type": "string", "description": "Python code to execute"}
|
221 |
+
}
|
222 |
+
output_type = "string"
|
223 |
+
|
224 |
+
def forward(self, code: str) -> str:
|
225 |
+
output = io.StringIO()
|
226 |
+
try:
|
227 |
+
with contextlib.redirect_stdout(output):
|
228 |
+
exec(code, {})
|
229 |
+
return output.getvalue().strip()
|
230 |
+
except Exception as e:
|
231 |
+
return f"Error: {str(e)}"
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
#from smolagents import Tool
|
237 |
#from langchain_community.document_loaders import WikipediaLoader
|
238 |
|
|
|
407 |
|
408 |
# ✅ New Llama Tool
|
409 |
code_llama_tool = CodeLlamaTool()
|
410 |
+
# ✅ Add Hugging Face default tools
|
411 |
+
arxiv_search_tool = ArxivSearchTool()
|
412 |
+
doc_qa_tool = HuggingFaceDocumentQATool()
|
413 |
+
image_qa_tool = HuggingFaceImageQATool()
|
414 |
+
translation_tool = HuggingFaceTranslationTool()
|
415 |
+
python_tool = PythonCodeExecutionTool()
|
416 |
|
417 |
system_prompt = f"""
|
418 |
You are my general AI assistant. Your task is to answer the question I asked.
|
|
|
431 |
keywords_extract_tool, speech_to_text_tool,
|
432 |
visit_webpage_tool, final_answer_tool,
|
433 |
parse_excel_to_json, video_transcription_tool,
|
434 |
+
arxiv_search_tool,
|
435 |
+
doc_qa_tool, image_qa_tool,
|
436 |
+
translation_tool, python_tool,
|
437 |
code_llama_tool # 🔧 Add here
|
438 |
],
|
439 |
add_base_tools=True
|