wt002 commited on
Commit
e844a7f
·
verified ·
1 Parent(s): 4a1c9d6

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +14 -13
agent.py CHANGED
@@ -3,19 +3,19 @@
3
  import os
4
  from dotenv import load_dotenv
5
  from langgraph.graph import START, StateGraph, MessagesState
6
- from langgraph.prebuilt import tools_condition
7
- from langgraph.prebuilt import ToolNode
8
  from langchain_google_genai import ChatGoogleGenerativeAI
9
  from langchain_groq import ChatGroq
10
  from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
11
  from langchain_community.tools.tavily_search import TavilySearchResults
12
- from langchain_community.document_loaders import WikipediaLoader
13
- from langchain_community.document_loaders import ArxivLoader
14
  from langchain_community.vectorstores import SupabaseVectorStore
15
  from langchain_core.messages import SystemMessage, HumanMessage
16
  from langchain_core.tools import tool
17
  from langchain.tools.retriever import create_retriever_tool
18
  from supabase.client import Client, create_client
 
 
19
 
20
  load_dotenv()
21
 
@@ -129,7 +129,7 @@ supabase = create_client(
129
  vector_store = SupabaseVectorStore(
130
  client=supabase,
131
  embedding= embeddings,
132
- table_name="documents",
133
  query_name="match_docs",
134
  )
135
  create_retriever_tool = create_retriever_tool(
@@ -181,14 +181,15 @@ def build_graph(provider: str = "google"):
181
  """Assistant node"""
182
  return {"messages": [llm_with_tools.invoke(state["messages"])]}
183
 
184
- # def retriever(state: MessagesState):
185
- # """Retriever node"""
186
- # similar_question = vector_store.similarity_search(state["messages"][0].content)
187
- #example_msg = HumanMessage(
188
- # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
189
- # )
190
- # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
191
 
 
192
  from langchain_core.messages import AIMessage
193
 
194
  def retriever(state: MessagesState):
@@ -216,8 +217,8 @@ def build_graph(provider: str = "google"):
216
  #builder.add_edge("tools", "assistant")
217
 
218
  builder = StateGraph(MessagesState)
219
- builder.add_node("retriever", retriever)
220
  builder.add_node("assistant", assistant)
 
221
 
222
  # Retriever ist Start und Endpunkt
223
  builder.set_entry_point("retriever")
 
3
  import os
4
  from dotenv import load_dotenv
5
  from langgraph.graph import START, StateGraph, MessagesState
6
+ from langgraph.prebuilt import tools_condition, ToolNode
 
7
  from langchain_google_genai import ChatGoogleGenerativeAI
8
  from langchain_groq import ChatGroq
9
  from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
  from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
 
12
  from langchain_community.vectorstores import SupabaseVectorStore
13
  from langchain_core.messages import SystemMessage, HumanMessage
14
  from langchain_core.tools import tool
15
  from langchain.tools.retriever import create_retriever_tool
16
  from supabase.client import Client, create_client
17
+ from typing import TypedDict, List, Annotated
18
+ import operator
19
 
20
  load_dotenv()
21
 
 
129
  vector_store = SupabaseVectorStore(
130
  client=supabase,
131
  embedding= embeddings,
132
+ table_name="docs",
133
  query_name="match_docs",
134
  )
135
  create_retriever_tool = create_retriever_tool(
 
181
  """Assistant node"""
182
  return {"messages": [llm_with_tools.invoke(state["messages"])]}
183
 
184
+ #def retriever(state: MessagesState):
185
+ # """Retriever node"""
186
+ # similar_question = vector_store.similarity_search(state["messages"][0].content)
187
+ # example_msg = HumanMessage(
188
+ # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
189
+ # )
190
+ # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
191
 
192
+
193
  from langchain_core.messages import AIMessage
194
 
195
  def retriever(state: MessagesState):
 
217
  #builder.add_edge("tools", "assistant")
218
 
219
  builder = StateGraph(MessagesState)
 
220
  builder.add_node("assistant", assistant)
221
+ builder.add_node("retriever", retriever)
222
 
223
  # Retriever ist Start und Endpunkt
224
  builder.set_entry_point("retriever")