wt002 commited on
Commit
e92879a
·
verified ·
1 Parent(s): afb2106

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +37 -0
agent.py CHANGED
@@ -397,6 +397,43 @@ def create_documents(data_source: str, data: List[dict]) -> List[Document]:
397
 
398
  import faiss
399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400
  # Custom FAISS wrapper (optional, if you still want it)
401
  class MyVector_Store:
402
  def __init__(self, index: faiss.Index):
 
397
 
398
  import faiss
399
 
400
+ import os
401
+ import numpy as np
402
+ import faiss
403
+
404
+ # Step 1: Define the path where the index will be saved
405
+ index_dir = "/home/wendy/Downloads/faiss_index"
406
+ os.makedirs(index_dir, exist_ok=True) # Create the directory if it doesn't exist
407
+ index_file_path = os.path.join(index_dir, "index.faiss")
408
+
409
+ # Step 2: Generate random data (e.g., 1000 vectors of dimension 128)
410
+ d = 128 # Vector dimensionality
411
+ n = 1000 # Number of vectors
412
+ np.random.seed(42) # For reproducibility
413
+
414
+ # Generate random vectors (uniform distribution)
415
+ xb = np.random.random((n, d)).astype('float32')
416
+
417
+ # Step 3: Create the FAISS index
418
+ # Using the L2 distance metric (Euclidean distance)
419
+ index = faiss.IndexFlatL2(d)
420
+
421
+ # Step 4: Add the vectors to the index
422
+ index.add(xb)
423
+
424
+ # Step 5: Save the index to the specified path
425
+ faiss.write_index(index, index_file_path)
426
+
427
+ print(f"FAISS index saved to: {index_file_path}")
428
+
429
+ # Step 6: Load the FAISS index from the file
430
+ loaded_index = faiss.read_index(index_file_path)
431
+
432
+ print("FAISS index loaded successfully from:", index_file_path)
433
+
434
+
435
+
436
+
437
  # Custom FAISS wrapper (optional, if you still want it)
438
  class MyVector_Store:
439
  def __init__(self, index: faiss.Index):