Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -370,35 +370,26 @@ import json
|
|
370 |
from langchain.schema import Document
|
371 |
|
372 |
def reverse_text(text: str) -> str:
|
373 |
-
|
|
|
374 |
|
375 |
-
# Load the JSON file
|
376 |
with open("questions.json", "r", encoding="utf-8") as f:
|
377 |
data = json.load(f)
|
378 |
|
379 |
-
# Convert each question into a Document
|
380 |
docs = [
|
381 |
Document(
|
382 |
-
page_content=(
|
383 |
-
str(reverse_text(item["question"]))
|
384 |
-
if isinstance(item["question"], (list, bytes))
|
385 |
-
else reverse_text(item["question"])
|
386 |
-
if item["question"].startswith(('.', ','))
|
387 |
-
else item["question"]
|
388 |
-
),
|
389 |
metadata={
|
390 |
"task_id": item["task_id"],
|
391 |
-
"level": item
|
392 |
-
"file_name": item
|
393 |
}
|
394 |
)
|
395 |
-
for item in data
|
396 |
-
if "question" in item and item["question"] # Skip empty questions
|
397 |
]
|
398 |
|
399 |
-
|
400 |
-
# Now extract texts
|
401 |
-
texts = [doc.page_content for doc in docs]
|
402 |
|
403 |
# Initialize the embedding model
|
404 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
370 |
from langchain.schema import Document
|
371 |
|
372 |
def reverse_text(text: str) -> str:
|
373 |
+
"""Fix backward questions like '.rewsna...'"""
|
374 |
+
return text[::-1].replace("\\", "") if text.startswith(('.', ',')) else text
|
375 |
|
|
|
376 |
with open("questions.json", "r", encoding="utf-8") as f:
|
377 |
data = json.load(f)
|
378 |
|
|
|
379 |
docs = [
|
380 |
Document(
|
381 |
+
page_content=reverse_text(str(item["question"])), # Ensure string + fix reversed text
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
metadata={
|
383 |
"task_id": item["task_id"],
|
384 |
+
"level": item.get("Level", "Unknown"),
|
385 |
+
"file_name": item.get("file_name", "")
|
386 |
}
|
387 |
)
|
388 |
+
for item in data
|
389 |
+
if "question" in item and item["question"] # Skip missing/empty questions
|
390 |
]
|
391 |
|
392 |
+
texts = [doc.page_content for doc in docs] # Now this will work
|
|
|
|
|
393 |
|
394 |
# Initialize the embedding model
|
395 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|