import os import gradio as gr import requests import inspect import pandas as pd from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool #from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool from dotenv import load_dotenv import heapq from collections import Counter import re from io import BytesIO from youtube_transcript_api import YouTubeTranscriptApi from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.utilities import WikipediaAPIWrapper from langchain_community.document_loaders import ArxivLoader from langchain_community.llms import HfApiModel # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" #Load environment variables load_dotenv() #from smolagents import Tool #from langchain_community.document_loaders import WikipediaLoader class WikiSearchTool(Tool): name = "wiki_search" description = "Search Wikipedia for a query and return up to 2 results." inputs = { "query": {"type": "string", "description": "The search term for Wikipedia."} } output_type = "string" def forward(self, query: str) -> str: search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return formatted_search_docs class StringReverseTool(Tool): name = "reverse_message" description = "When you received a strange text, try to reverse it and perform action described in reversed message." inputs = { "message": { "type": "string", "description": "A message, which looks like strange and can be reversed to get actions to execute." } } output_type = "string" def __init__(self): return def forward(self, message: str): return message[::-1] class KeywordsExtractorTool(Tool): """Extracts top 5 keywords from a given text based on frequency.""" name = "keywords_extractor" description = "This tool returns the 5 most frequent keywords occur in provided block of text." inputs = { "text": { "type": "string", "description": "Text to analyze for keywords.", } } output_type = "string" def forward(self, text: str) -> str: try: all_words = re.findall(r'\b\w+\b', text.lower()) conjunctions = {'a', 'and', 'of', 'is', 'in', 'to', 'the'} filtered_words = [] for w in all_words: if w not in conjunctions: filtered_words.push(w) word_counts = Counter(filtered_words) k = 5 return heapq.nlargest(k, word_counts.items(), key=lambda x: x[1]) except Exception as e: return f"Error during extracting most common words: {e}" @tool def parse_excel_to_json(task_id: str) -> dict: """ For a given task_id fetch and parse an Excel file and save parsed data in structured JSON file. Args: task_id: An task ID to fetch. Returns: { "task_id": str, "sheets": { "SheetName1": [ {col1: val1, col2: val2, ...}, ... ], ... }, "status": "Success" | "Error" } """ url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}" try: response = requests.get(url, timeout=100) if response.status_code != 200: return {"task_id": task_id, "sheets": {}, "status": f"{response.status_code} - Failed"} xls_content = pd.ExcelFile(BytesIO(response.content)) json_sheets = {} for sheet in xls_content.sheet_names: df = xls_content.parse(sheet) df = df.dropna(how="all") rows = df.head(20).to_dict(orient="records") json_sheets[sheet] = rows return { "task_id": task_id, "sheets": json_sheets, "status": "Success" } except Exception as e: return { "task_id": task_id, "sheets": {}, "status": f"Error in parsing Excel file: {str(e)}" } class VideoTranscriptionTool(Tool): """Fetch transcripts from YouTube videos""" name = "transcript_video" description = "Fetch text transcript from YouTube movies with optional timestamps" inputs = { "url": {"type": "string", "description": "YouTube video URL or ID"}, "include_timestamps": {"type": "boolean", "description": "If timestamps should be included in output", "nullable": True} } output_type = "string" def forward(self, url: str, include_timestamps: bool = False) -> str: if "youtube.com/watch" in url: video_id = url.split("v=")[1].split("&")[0] elif "youtu.be/" in url: video_id = url.split("youtu.be/")[1].split("?")[0] elif len(url.strip()) == 11: # Direct ID video_id = url.strip() else: return f"YouTube URL or ID: {url} is invalid!" try: transcription = YouTubeTranscriptApi.get_transcript(video_id) if include_timestamps: formatted_transcription = [] for part in transcription: timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}" formatted_transcription.append(f"[{timestamp}] {part['text']}") return "\n".join(formatted_transcription) else: return " ".join([part['text'] for part in transcription]) except Exception as e: return f"Error in extracting YouTube transcript: {str(e)}" class BasicAgent: def __init__(self): token = os.environ.get("HF_API_TOKEN") self.model = HfApiModel( "google/gemini-2.5-flash", temperature=0.1, token=token ) search_tool = DuckDuckGoSearchTool() wiki_search_tool = WikiSearchTool() str_reverse_tool = StringReverseTool() keywords_extract_tool = KeywordsExtractorTool() speech_to_text_tool = SpeechToTextTool() visit_webpage_tool = VisitWebpageTool() final_answer_tool = FinalAnswerTool() video_transcription_tool = VideoTranscriptionTool() system_prompt = f""" You are my general AI assistant. Your task is to answer the question I asked. First, provide an explanation of your reasoning, step by step, to arrive at the answer. Then, return your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]". [YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question. If the answer is a number, do not use commas or units (e.g., $, %) unless specified. If the answer is a string, do not use articles or abbreviations (e.g., for cities), and write digits in plain text unless specified. If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string. """ self.agent = CodeAgent( model=self.model, tools=[search_tool, wiki_search_tool, str_reverse_tool, keywords_extract_tool, speech_to_text_tool, visit_webpage_tool, final_answer_tool, parse_excel_to_json, video_transcription_tool], add_base_tools=True ) self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + system_prompt def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") answer = self.agent.run(question) print(f"Agent returning answer: {answer}") return answer def run_and_submit_all( profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Removed max_rows=10 from DataFrame constructor results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)