import os from dotenv import load_dotenv import gradio as gr import requests from typing import List, Dict, Union import requests import wikipediaapi import pandas as pd import requests from bs4 import BeautifulSoup import re from urllib.parse import quote load_dotenv() # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized.") self.session = requests.Session() self.session.headers.update({ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' }) self.cache = {} def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") fixed_answer = self.agent.answer_question({question}) print(f"Agent returning fixed answer: {fixed_answer}") return fixed_answer def analyze_query(self, query): """Analyze the query using regex patterns""" return { 'entities': self._extract_entities(query), 'intent': self._determine_intent(query.lower()), 'time_constraints': self._extract_time_constraints(query), 'quantities': self._extract_quantities(query) } def _extract_entities(self, text): """Simple entity extraction using capitalization patterns""" # Find proper nouns (capitalized phrases) entities = re.findall(r'([A-Z][a-zA-Z]+(?:\s+[A-Z][a-zA-Z]+)*)', text) # Filter out small words and standalone letters return [(ent, 'UNKNOWN') for ent in entities if len(ent) > 2 and ' ' in ent] def _determine_intent(self, query): """Determine intent using keyword patterns""" if 'how many' in query: return 'count' elif 'when' in query or 'date' in query: return 'date' elif 'who' in query: return 'person' elif 'what is' in query or 'define' in query: return 'definition' elif 'list' in query or 'name all' in query: return 'list' return 'general' def _extract_time_constraints(self, text): """Extract year ranges from text""" constraints = [] # Match patterns like "between 2000 and 2009" range_match = re.search(r'between (\d{4}) and (\d{4})', text) if range_match: constraints.append(('range', int(range_match.group(1)), int(range_match.group(2)))) # Match patterns like "in 2005" year_match = re.search(r'in (\d{4})', text) if year_match: constraints.append(('point', int(year_match.group(1)))) return constraints def _extract_quantities(self, text): """Extract numbers from text""" return [int(match) for match in re.findall(r'\b(\d+)\b', text)] def search_wikipedia(self, query, num_results=3): """Search Wikipedia's API""" url = "https://en.wikipedia.org/w/api.php" params = { 'action': 'query', 'list': 'search', 'srsearch': query, 'format': 'json', 'srlimit': num_results } try: response = self.session.get(url, params=params).json() return [{ 'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}", 'title': item['title'], 'snippet': item['snippet'], 'source': 'wikipedia' } for item in response['query']['search']] except Exception as e: print(f"Wikipedia search error: {e}") return [] def fetch_page(self, url): """Fetch and parse a Wikipedia page""" if url in self.cache: return self.cache[url] try: response = self.session.get(url, timeout=10) soup = BeautifulSoup(response.text, 'html.parser') # Clean the page content for element in soup(['script', 'style', 'nav', 'footer', 'table']): element.decompose() page_data = { 'url': url, 'title': soup.title.string if soup.title else '', 'text': ' '.join(soup.stripped_strings), 'soup': soup } self.cache[url] = page_data return page_data except Exception as e: print(f"Error fetching {url}: {e}") return None def answer_question(self, question): """Answer a question using Wikipedia""" print(f"\nQuestion: {question}") # Step 1: Analyze the question analysis = self.analyze_query(question) print(f"Analysis: {analysis}") # Step 2: Search Wikipedia search_results = self.search_wikipedia(question) if not search_results: return {"answer": "No Wikipedia results found", "source": None} # Step 3: Fetch and analyze pages answers = [] for result in search_results: page = self.fetch_page(result['url']) if page: answer = self._extract_answer(page, analysis) if answer: answers.append({ 'answer': answer, 'source': result['url'], 'confidence': self._calculate_confidence(answer, analysis) }) # Step 4: Return the best answer if not answers: return {"answer": "No answers found in Wikipedia", "source": None} answers.sort(key=lambda x: x['confidence'], reverse=True) best_answer = answers[0] # Format the output result = { "question": question, "answer": best_answer['answer'], "source": best_answer['source'], "confidence": f"{best_answer['confidence']:.0%}" } if isinstance(best_answer['answer'], list): result['answer'] = "\n- " + "\n- ".join(best_answer['answer']) return result def _extract_answer(self, page, analysis): """Extract answer based on intent""" if analysis['intent'] == 'count': return self._extract_count(page['text'], analysis) elif analysis['intent'] == 'date': return self._extract_date(page['text'], analysis) elif analysis['intent'] == 'list': return self._extract_list(page['soup'], analysis) else: return self._extract_general(page['text'], analysis) def _extract_count(self, text, analysis): """Extract a count/number from text""" entities = [e[0] for e in analysis['entities']] pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b' matches = re.finditer(pattern, text, re.IGNORECASE) counts = [int(match.group(1)) for match in matches] return max(counts) if counts else None def _extract_date(self, text, analysis): """Extract dates from text""" date_pattern = r'\b(\d{1,2}(?:st|nd|rd|th)?\s+(?:\w+)\s+\d{4}|\d{4})\b' dates = [match.group(0) for match in re.finditer(date_pattern, text)] entities = [e[0] for e in analysis['entities']] return next((d for d in dates if any(e.lower() in text.lower() for e in entities)), None) def _extract_list(self, soup, analysis): """Extract list items from page""" entities = [e[0] for e in analysis['entities']] items = [] for list_tag in soup.find_all(['ul', 'ol']): list_items = [li.get_text().strip() for li in list_tag.find_all('li')] if any(e.lower() in ' '.join(list_items).lower() for e in entities): items.extend(list_items) return items if items else None def _extract_general(self, text, analysis): """Extract general information from text""" entities = [e[0] for e in analysis['entities']] sentences = re.split(r'(?