# agent.py import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client from sentence_transformers import SentenceTransformer from langchain.embeddings.base import Embeddings from typing import List import numpy as np import pandas as pd import uuid from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.schema import Document from langchain.agents import create_retriever_tool from sentence_transformers import SentenceTransformer load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # ------------------------------- # Step 1: Load documents from CSV file (max 165 rows) # ------------------------------- csv_file_path = "/home/wendy/Downloads/documents.csv" # Replace with your actual file path df = pd.read_csv(csv_file_path).head(165) # Check if 'content' column exists assert 'content' in df.columns, "'content' column is required in the CSV file." # Add 'id' and 'metadata' column df['id'] = [str(uuid.uuid4()) for _ in range(len(df))] if 'metadata' not in df.columns: df['metadata'] = [{} for _ in range(len(df))] else: # If metadata is a JSON string, convert it to dict import json df['metadata'] = df['metadata'].apply(lambda x: json.loads(x) if isinstance(x, str) else x) # Convert each row into a Document docs = [ Document(page_content=row['content'], metadata={'id': row['id'], **row['metadata']}) for _, row in df.iterrows() ] # ------------------------------- # Step 2: Set up HuggingFace Embeddings and FAISS VectorStore # ------------------------------- # Initialize HuggingFace Embedding model embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # Create FAISS VectorStore from documents vector_store = FAISS.from_documents(docs, embedding_model) # Save the FAISS index locally vector_store.save_local("faiss_index") #print("✅ FAISS index created and saved locally.") # ------------------------------- # Step 3: Create Retriever Tool (for use in LangChain) # ------------------------------- retriever = vector_store.as_retriever() # Create the retriever tool question_retriever_tool = create_retriever_tool( retriever=retriever, name="Question_Search", description="A tool to retrieve documents related to a user's question." ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] # Build graph function def build_graph(provider: str = "google"): """Build the graph""" # Load environment variables from .env file if provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": # Groq https://console.groq.com/docs/models llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it elif provider == "huggingface": # TODO: Add huggingface endpoint llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ), ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search(state["messages"][0].content) example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile()