import os from dotenv import load_dotenv import gradio as gr import requests from typing import List, Dict, Union import requests import wikipediaapi import pandas as pd import requests from bs4 import BeautifulSoup import re from urllib.parse import quote import requests from urllib.parse import quote from googlesearch import search load_dotenv() # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") fixed_answer = agent.answer_question({question}) print(f"Agent returning fixed answer: {fixed_answer}") return fixed_answer class BasicAgent: def __init__(self): self.session = requests.Session() self.session.headers.update({ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' }) self.cache = {} def analyze_query(self, query): """Simplified query analysis without spaCy""" analysis = { 'entities': self._extract_entities(query), 'intent': self._determine_intent(query.lower()), 'time_constraints': self._extract_time_constraints(query), 'quantities': self._extract_quantities(query) } return analysis def _extract_entities(self, text): """Simple entity extraction using patterns""" # Extract capitalized phrases (crude named entity recognition) entities = re.findall(r'([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)', text) return [(ent, 'UNKNOWN') for ent in entities if len(ent.split()) < 4] def _determine_intent(self, query): """Determine intent using keyword matching""" if 'how many' in query: return 'count' elif 'when' in query: return 'date' elif 'who' in query: return 'person' elif 'what is' in query or 'define' in query: return 'definition' elif 'list' in query or 'name all' in query: return 'list' return 'general' def _extract_time_constraints(self, text): """Extract time ranges from text""" constraints = [] range_match = re.search(r'between (\d{4}) and (\d{4})', text) if range_match: constraints.append(('range', int(range_match.group(1)), int(range_match.group(2)))) year_match = re.search(r'in (\d{4})', text) if year_match: constraints.append(('point', int(year_match.group(1)))) return constraints def _extract_quantities(self, text): """Extract numerical quantities from text""" return [int(match) for match in re.findall(r'\b(\d+)\b', text)] def search_web(self, query, num_results=3): """Search the web using Google and Wikipedia""" results = [] # Google search try: results.extend({ 'url': url, 'source': 'google' } for url in search(query, num_results=num_results, stop=num_results)) except Exception as e: print(f"Google search error: {e}") # Wikipedia search try: wiki_url = "https://en.wikipedia.org/w/api.php" params = { 'action': 'query', 'list': 'search', 'srsearch': query, 'format': 'json', 'srlimit': num_results } response = self.session.get(wiki_url, params=params).json() results.extend({ 'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}", 'title': item['title'], 'snippet': item['snippet'], 'source': 'wikipedia' } for item in response['query']['search']) except Exception as e: print(f"Wikipedia search error: {e}") return results[:num_results*2] def fetch_page(self, url): """Fetch and parse a web page with caching""" if url in self.cache: return self.cache[url] try: response = self.session.get(url, timeout=10) soup = BeautifulSoup(response.text, 'html.parser') # Clean the page content for element in soup(['script', 'style', 'nav', 'footer']): element.decompose() page_data = { 'url': url, 'title': soup.title.string if soup.title else '', 'text': ' '.join(soup.stripped_strings), 'soup': soup } self.cache[url] = page_data return page_data except Exception as e: print(f"Error fetching {url}: {e}") return None def answer_question(self, question, num_sources=3): """Main method to answer a question""" print(f"\nQuestion: {question}") # Step 1: Analyze the question analysis = self.analyze_query(question) print(f"Analysis: {analysis}") # Step 2: Search the web search_results = self.search_web(question, num_sources) print(f"Found {len(search_results)} potential sources") # Step 3: Fetch and analyze pages answers = [] for result in search_results: page = self.fetch_page(result['url']) if page: answer = self._extract_answer(page, analysis) if answer: answers.append({ 'answer': answer, 'source': result['url'], 'confidence': self._calculate_confidence(answer, analysis) }) # Step 4: Return the best answer if not answers: return {"answer": "No answers found", "source": None} answers.sort(key=lambda x: x['confidence'], reverse=True) best_answer = answers[0] # Format the output result = { "question": question, "answer": best_answer['answer'], "source": best_answer['source'], "confidence": f"{best_answer['confidence']:.0%}" } if isinstance(best_answer['answer'], list): result['answer'] = "\n- " + "\n- ".join(best_answer['answer']) return result def _extract_answer(self, page, analysis): """Extract answer based on intent""" if analysis['intent'] == 'count': return self._extract_count(page['text'], analysis) elif analysis['intent'] == 'date': return self._extract_date(page['text'], analysis) elif analysis['intent'] == 'list': return self._extract_list(page['soup'], analysis) else: return self._extract_general(page['text'], analysis) def _extract_count(self, text, analysis): """Extract a count/number from text""" entities = [e[0] for e in analysis['entities']] pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b' matches = re.finditer(pattern, text, re.IGNORECASE) counts = [int(match.group(1))) for match in matches] return max(counts) if counts else None def _extract_date(self, text, analysis): """Extract dates from text""" date_pattern = r'\b(\d{1,2}(?:st|nd|rd|th)?\s+(?:\w+)\s+\d{4}|\d{4})\b' dates = [match.group(0) for match in re.finditer(date_pattern, text)] entities = [e[0] for e in analysis['entities']] return next((d for d in dates if any(e.lower() in text.lower() for e in entities)), None) def _extract_list(self, soup, analysis): """Extract list items from page""" entities = [e[0] for e in analysis['entities']] items = [] for list_tag in soup.find_all(['ul', 'ol']): list_items = [li.get_text().strip() for li in list_tag.find_all('li')] if any(e.lower() in ' '.join(list_items).lower() for e in entities): items.extend(list_items) return items if items else None def _extract_general(self, text, analysis): """Extract general information from text""" entities = [e[0] for e in analysis['entities']] sentences = re.split(r'(?