File size: 14,791 Bytes
cf7f887 e9206ba cf7f887 e9206ba cf7f887 2fb062a e9206ba cf7f887 e9206ba cf7f887 e9206ba cf7f887 e9206ba cf7f887 e9206ba cf7f887 e9206ba cf7f887 2fb062a cf7f887 e9206ba 2fb062a cf7f887 2fb062a cf7f887 e9206ba 2fb062a e9206ba 2fb062a e9206ba 2fb062a e9206ba cf7f887 e9206ba cf7f887 2fb062a cf7f887 e9206ba 2fb062a cf7f887 2fb062a e9206ba cf7f887 e9206ba cf7f887 e9206ba 2fb062a e9206ba cf7f887 2fb062a e9206ba 2fb062a e9206ba cf7f887 e9206ba 2fb062a e9206ba 2fb062a e9206ba cf7f887 2fb062a cf7f887 2fb062a cf7f887 e9206ba cf7f887 e9206ba 2fb062a cf7f887 e9206ba cf7f887 e9206ba cf7f887 e9206ba cf7f887 2fb062a e9206ba 2fb062a cf7f887 e9206ba cf7f887 e9206ba cf7f887 e9206ba cf7f887 e9206ba 2fb062a e9206ba cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a cf7f887 2fb062a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# app.py – Roboflow‑aware YOLOv8 Dataset Quality Evaluator for Hugging Face Spaces
#
# ▸ Prompts for a Roboflow **API key** and a `.txt` list of Universe dataset URLs (one per line)
# ▸ Downloads each dataset automatically in YOLOv8 format to a temp directory
# ▸ Runs a battery of quality checks:
# – integrity / corruption
# – class‑balance stats
# – blur / brightness image‑quality flags
# – exact / near‑duplicate detection
# – optional model‑assisted label QA (needs a YOLO .pt weights file)
# ▸ Still supports manual ZIP / server‑path evaluation
# ▸ Outputs a Markdown report + class‑distribution dataframe
#
# Hugging Face Spaces picks up `app.py` automatically. Dependencies go in `requirements.txt`.
# Spaces injects the port as $PORT – we pass it to demo.launch().
from __future__ import annotations
import imghdr
import json
import os
import re
import shutil
import tempfile
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import yaml
from PIL import Image
from tqdm import tqdm
# --------------------------------------------------------------------------- #
# Optional heavy deps – present locally, but fine‑grained to keep Spaces slim #
# --------------------------------------------------------------------------- #
try:
import cv2 # type: ignore
except ImportError:
cv2 = None
try:
import imagehash # type: ignore
except ImportError:
imagehash = None
try:
from ultralytics import YOLO # type: ignore
except ImportError:
YOLO = None # noqa: N806
try:
from roboflow import Roboflow # type: ignore
except ImportError:
Roboflow = None # type: ignore
# --------------------------------------------------------------------------- #
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
TMP_ROOT.mkdir(parents=True, exist_ok=True)
@dataclass
class DuplicateGroup:
hash_val: str
paths: List[Path]
# --------------------------------------------------------------------------- #
# Generic helpers #
# --------------------------------------------------------------------------- #
def load_yaml(path: Path) -> Dict:
with path.open(encoding="utf-8") as f:
return yaml.safe_load(f)
def parse_label_file(path: Path) -> List[Tuple[int, float, float, float, float]]:
out: List[Tuple[int, float, float, float, float]] = []
if not path.exists():
return out
with path.open(encoding="utf-8") as f:
for ln in f:
parts = ln.strip().split()
if len(parts) == 5:
cid, *coords = parts
out.append((int(cid), *map(float, coords)))
return out
def guess_image_dirs(root: Path) -> List[Path]:
subs = [
root / "images",
root / "train" / "images",
root / "valid" / "images",
root / "val" / "images",
root / "test" / "images",
]
return [d for d in subs if d.exists()]
def gather_dataset(root: Path, yaml_path: Path | None = None):
if yaml_path is None:
yamls = list(root.glob("*.yaml"))
if not yamls:
raise FileNotFoundError("Dataset YAML not found")
yaml_path = yamls[0]
meta = load_yaml(yaml_path)
img_dirs = guess_image_dirs(root)
if not img_dirs:
raise FileNotFoundError("images/ directory hierarchy missing")
imgs = [p for d in img_dirs for p in d.rglob("*.*") if imghdr.what(p) is not None]
lbls = [p.parent.parent / "labels" / f"{p.stem}.txt" for p in imgs]
return imgs, lbls, meta
# --------------------------------------------------------------------------- #
# Quality‑check stages #
# --------------------------------------------------------------------------- #
def _is_corrupt(path: Path) -> bool:
try:
with Image.open(path) as im:
im.verify()
return False
except Exception:
return True
def qc_integrity(imgs: List[Path], lbls: List[Path]) -> Dict:
miss_lbl = [i for i, l in zip(imgs, lbls) if not l.exists()]
miss_img = [l for l in lbls if l.exists() and not (l.parent.parent / "images" / f"{l.stem}{l.suffix}").exists()]
corrupt: List[Path] = []
with ThreadPoolExecutor(max_workers=os.cpu_count() or 4) as ex:
fut = {ex.submit(_is_corrupt, p): p for p in imgs}
for f in tqdm(as_completed(fut), total=len(fut), desc="integrity", leave=False):
if f.result():
corrupt.append(fut[f])
score = 100 - (len(miss_lbl) + len(miss_img) + len(corrupt)) / max(len(imgs), 1) * 100
return {
"name": "Integrity",
"score": max(score, 0),
"details": {
"missing_label_files": [str(p) for p in miss_lbl],
"missing_image_files": [str(p) for p in miss_img],
"corrupt_images": [str(p) for p in corrupt],
},
}
def qc_class_balance(lbls: List[Path]) -> Dict:
cls_counts = Counter()
boxes_per_img = []
for l in lbls:
bs = parse_label_file(l)
boxes_per_img.append(len(bs))
cls_counts.update(b[0] for b in bs)
if not cls_counts:
return {"name": "Class balance", "score": 0, "details": "No labels"}
bal = min(cls_counts.values()) / max(cls_counts.values()) * 100
return {
"name": "Class balance",
"score": bal,
"details": {
"class_counts": dict(cls_counts),
"boxes_per_image": {
"min": int(np.min(boxes_per_img)),
"max": int(np.max(boxes_per_img)),
"mean": float(np.mean(boxes_per_img)),
},
},
}
def qc_image_quality(imgs: List[Path], blur_thr: float = 100.0) -> Dict:
if cv2 is None:
return {"name": "Image quality", "score": 100, "details": "cv2 not installed"}
blurry, dark, bright = [], [], []
for p in tqdm(imgs, desc="img‑quality", leave=False):
im = cv2.imread(str(p))
if im is None:
continue
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
lap = cv2.Laplacian(gray, cv2.CV_64F).var()
br = np.mean(gray)
if lap < blur_thr:
blurry.append(p)
if br < 25:
dark.append(p)
if br > 230:
bright.append(p)
bad = len(set(blurry + dark + bright))
score = 100 - bad / max(len(imgs), 1) * 100
return {
"name": "Image quality",
"score": score,
"details": {
"blurry": [str(p) for p in blurry],
"dark": [str(p) for p in dark],
"bright": [str(p) for p in bright],
},
}
def qc_duplicates(imgs: List[Path]) -> Dict:
if imagehash is None:
return {"name": "Duplicates", "score": 100, "details": "imagehash not installed"}
hashes: Dict[str, List[Path]] = defaultdict(list)
for p in tqdm(imgs, desc="hashing", leave=False):
h = str(imagehash.average_hash(Image.open(p)))
hashes[h].append(p)
groups = [g for g in hashes.values() if len(g) > 1]
dup = sum(len(g) - 1 for g in groups)
score = 100 - dup / max(len(imgs), 1) * 100
return {
"name": "Duplicates",
"score": score,
"details": {"groups": [[str(p) for p in g] for g in groups]},
}
def _rel_iou(b1, b2):
x1, y1, w1, h1 = b1
x2, y2, w2, h2 = b2
xa1, ya1, xa2, ya2 = x1 - w1 / 2, y1 - h1 / 2, x1 + w1 / 2, y1 + h1 / 2
xb1, yb1, xb2, yb2 = x2 - w2 / 2, y2 - h2 / 2, x2 + w2 / 2, y2 + h2 / 2
ix1, iy1, ix2, iy2 = max(xa1, xb1), max(ya1, yb1), min(xa2, xb2), min(ya2, yb2)
iw, ih = max(ix2 - ix1, 0), max(iy2 - iy1, 0)
inter = iw * ih
union = w1 * h1 + w2 * h2 - inter
return inter / union if union else 0
def qc_model_qa(imgs: List[Path], weights: str | None, lbls: List[Path], iou_thr: float = 0.5) -> Dict:
if weights is None or YOLO is None:
return {"name": "Model QA", "score": 100, "details": "weights or YOLO unavailable"}
model = YOLO(weights)
ious, mism = [], []
for p in tqdm(imgs, desc="model‑QA", leave=False):
gtb = parse_label_file(p.parent.parent / "labels" / f"{p.stem}.txt")
if not gtb:
continue
res = model.predict(p, verbose=False)[0]
for cls, x, y, w, h in gtb:
best = 0.0
for b, c in zip(res.boxes.xywh, res.boxes.cls):
if int(c) != cls:
continue
best = max(best, _rel_iou((x, y, w, h), tuple(b.tolist())))
ious.append(best)
if best < iou_thr:
mism.append(p)
miou = float(np.mean(ious)) if ious else 1.0
return {
"name": "Model QA",
"score": miou * 100,
"details": {"mean_iou": miou, "mismatched_images": [str(p) for p in mism[:50]]},
}
# --------------------------------------------------------------------------- #
DEFAULT_W = {
"Integrity": 0.30,
"Class balance": 0.15,
"Image quality": 0.15,
"Duplicates": 0.10,
"Model QA": 0.30,
}
def aggregate(scores):
return sum(DEFAULT_W.get(r["name"], 0) * r["score"] for r in scores)
# --------------------------------------------------------------------------- #
# Roboflow helpers #
# --------------------------------------------------------------------------- #
RF_RE = re.compile(r"https://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")
def download_rf_dataset(url: str, rf_api: "Roboflow", dest: Path) -> Path:
m = RF_RE.match(url.strip())
if not m:
raise ValueError(f"Bad RF URL: {url}")
ws, proj, ver = m.groups()
ds_dir = dest / f"{ws}_{proj}_v{ver}"
if ds_dir.exists():
return ds_dir
project = rf_api.workspace(ws).project(proj)
project.version(int(ver)).download("yolov8", location=str(ds_dir))
return ds_dir
# --------------------------------------------------------------------------- #
# Main evaluation logic #
# --------------------------------------------------------------------------- #
def run_quality(root: Path, yaml_override: Path | None, weights: Path | None):
imgs, lbls, meta = gather_dataset(root, yaml_override)
res = [
qc_integrity(imgs, lbls),
qc_class_balance(lbls),
qc_image_quality(imgs),
qc_duplicates(imgs),
qc_model_qa(imgs, str(weights) if weights else None, lbls),
]
final = aggregate(res)
# markdown
md = [f"## **{meta.get('name', root.name)}** — Score {final:.1f}/100"]
for r in res:
md.append(f"### {r['name']} {r['score']:.1f}")
md.append("<details><summary>details</summary>\n\n```json")
md.append(json.dumps(r["details"], indent=2))
md.append("```\n</details>\n")
md_str = "\n".join(md)
cls_counts = res[1]["details"].get("class_counts", {}) # type: ignore[index]
df = pd.DataFrame.from_dict(cls_counts, orient="index", columns=["count"])
df.index.name = "class"
return md_str, df
# --------------------------------------------------------------------------- #
# Gradio interface #
# --------------------------------------------------------------------------- #
def evaluate(
api_key: str,
url_txt: gr.File | None,
zip_file: gr.File | None,
server_path: str,
yaml_file: gr.File | None,
weights: gr.File | None,
):
if not any([url_txt, zip_file, server_path]):
return "Upload a .txt of URLs or dataset ZIP/path", pd.DataFrame()
reports, dfs = [], []
# ---- Roboflow batch mode ----
if url_txt:
if Roboflow is None:
return "`roboflow` not installed", pd.DataFrame()
if not api_key:
return "Enter Roboflow API key", pd.DataFrame()
rf = Roboflow(api_key=api_key.strip())
txt_lines = Path(url_txt.name).read_text().splitlines()
for line in txt_lines:
if not line.strip():
continue
try:
ds_root = download_rf_dataset(line, rf, TMP_ROOT)
md, df = run_quality(ds_root, None, Path(weights.name) if weights else None)
reports.append(md)
dfs.append(df)
except Exception as e:
reports.append(f"### {line}\n\n⚠️ {e}")
# ---- Manual ZIP ----
if zip_file:
tmp_dir = Path(tempfile.mkdtemp())
shutil.unpack_archive(zip_file.name, tmp_dir)
md, df = run_quality(tmp_dir, Path(yaml_file.name) if yaml_file else None, Path(weights.name) if weights else None)
reports.append(md)
dfs.append(df)
shutil.rmtree(tmp_dir, ignore_errors=True)
# ---- Manual path ----
if server_path:
md, df = run_quality(Path(server_path), Path(yaml_file.name) if yaml_file else None, Path(weights.name) if weights else None)
reports.append(md)
dfs.append(df)
summary_md = "\n\n---\n\n".join(reports)
combined_df = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
return summary_md, combined_df
with gr.Blocks(title="YOLO Dataset Quality Evaluator") as demo:
gr.Markdown(
"""
# YOLOv8 Dataset Quality Evaluator
### Roboflow batch
1. Paste your **Roboflow API key**
2. Upload a **.txt** file – one `https://universe.roboflow.com/.../dataset/x` per line
### Manual
* Upload a dataset **ZIP** or type a dataset **path** on the server
* Optionally supply a custom **data.yaml** and/or a **YOLO .pt** weights file for model‑assisted QA
"""
)
with gr.Row():
api_in = gr.Textbox(label="Roboflow API key", type="password", placeholder="rf_XXXXXXXXXXXXXXXX")
url_txt_in = gr.File(label=".txt of RF dataset URLs", file_types=[".txt"])
with gr.Row():
zip_in = gr.File(label="Dataset ZIP")
path_in = gr.Textbox(label="Path on server", placeholder="/data/my_dataset")
with gr.Row():
yaml_in = gr.File(label="Custom YAML", file_types=[".yaml"])
weights_in = gr.File(label="YOLO weights (.pt)")
run_btn = gr.Button("Evaluate")
out_md = gr.Markdown()
out_df = gr.Dataframe()
run_btn.click(
evaluate,
inputs=[api_in, url_txt_in, zip_in, path_in, yaml_in, weights_in],
outputs=[out_md, out_df],
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|