import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch import spaces # Import the spaces library # Model IDs from Hugging Face Hub (now 1.5B, 7B, and 14B) model_ids = { "1.5B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "7B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "14B": "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", # Added 14B back } # Revised Default Prompts (as defined above) default_prompt_1_5b = """**Code Analysis Task** As a Senior Code Analyst, analyze this programming problem: **User Request:** {user_prompt} **Relevant Context:** {context_1_5b} **Analysis Required:** 1. Briefly break down the problem, including key constraints and edge cases. 2. Suggest 2-3 potential approach options (algorithms/data structures). 3. Recommend ONE primary strategy and briefly justify your choice. 4. Provide a very brief initial pseudocode sketch of the core logic.""" default_prompt_7b = """**Code Implementation Task** As a Principal Software Engineer, provide production-ready Streamlit/Python code based on this analysis: **Initial Analysis:** {response_1_5b} **Relevant Context:** {context_7b} **Code Requirements:** 1. Generate concise, production-grade Python code for a Streamlit app. 2. Include necessary imports, UI elements, and basic functionality. 3. Add comments for clarity. """ # Function to load model and tokenizer (same) def load_model_and_tokenizer(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, # Or torch.float16 if you prefer device_map='auto', # Let accelerate decide (will use GPU when @spaces.GPU active) trust_remote_code=True ) return model, tokenizer # Load the selected models and tokenizers (now loads 1.5B, 7B, 14B) models = {} tokenizers = {} for size, model_id in model_ids.items(): print(f"Loading {size} model: {model_id}") models[size], tokenizers[size] = load_model_and_tokenizer(model_id) print(f"Loaded {size} model.") # --- Shared Memory Implementation --- (Same) shared_memory = [] def store_in_memory(memory_item): shared_memory.append(memory_item) print(f"\n[Memory Stored]: {memory_item[:50]}...") def retrieve_from_memory(query, top_k=2): relevant_memories = [] query_lower = query.lower() for memory_item in shared_memory: if query_lower in memory_item.lower(): relevant_memories.append(memory_item) if not relevant_memories: print("\n[Memory Retrieval]: No relevant memories found.") return [] print(f"\n[Memory Retrieval]: Found {len(relevant_memories)} relevant memories.") return relevant_memories[:top_k] # --- Swarm Agent Function with Model Swapping --- @spaces.GPU # <---- GPU DECORATOR ADDED HERE! def swarm_agent_sequential_rag(user_prompt, prompt_1_5b_template, prompt_7b_template, final_model_size="7B", temperature=0.5, top_p=0.9, max_new_tokens=300): # Added final_model_size global shared_memory shared_memory = [] # Clear memory for each new request print(f"\n--- Swarm Agent Processing with Shared Memory (RAG) - GPU ACCELERATED - Final Model: {final_model_size} ---") # Updated message # 1.5B Model - Brainstorming/Initial Draft (same logic) print("\n[1.5B Model - Brainstorming] - GPU Accelerated") retrieved_memory_1_5b = retrieve_from_memory(user_prompt) context_1_5b = "\n".join([f"- {mem}" for mem in retrieved_memory_1_5b]) if retrieved_memory_1_5b else "No relevant context found in memory." # Use user-provided prompt template for 1.5B model prompt_1_5b = prompt_1_5b_template.format(user_prompt=user_prompt, context_1_5b=context_1_5b) input_ids_1_5b = tokenizers["1.5B"].encode(prompt_1_5b, return_tensors="pt").to(models["1.5B"].device) output_1_5b = models["1.5B"].generate( input_ids_1_5b, max_new_tokens=max_new_tokens, # Use user-defined max_new_tokens temperature=temperature, # Use user-defined temperature top_p=top_p, # Use user-defined top_p do_sample=True ) response_1_5b = tokenizers["1.5B"].decode(output_1_5b[0], skip_special_tokens=True) print(f"1.5B Response:\n{response_1_5b}") store_in_memory(f"1.5B Model Initial Response: {response_1_5b[:200]}...") # Final Stage Model Selection (7B or 14B) if final_model_size == "7B": final_model = models["7B"] final_tokenizer = tokenizers["7B"] print("\n[7B Model - Final Code Generation] - GPU Accelerated") # Model-specific message model_stage_name = "7B Model - Final Code" final_max_new_tokens = max_new_tokens + 100 # Slightly more tokens for 7B elif final_model_size == "14B": final_model = models["14B"] final_tokenizer = tokenizers["14B"] print("\n[14B Model - Final Code Generation] - GPU Accelerated") # Model-specific message model_stage_name = "14B Model - Final Code" final_max_new_tokens = max_new_tokens + 200 # Even more tokens for 14B else: # Default to 7B if selection is somehow invalid final_model = models["7B"] final_tokenizer = tokenizers["7B"] print("\n[7B Model - Final Code Generation] - GPU Accelerated (Default)") model_stage_name = "7B Model - Final Code (Default)" final_max_new_tokens = max_new_tokens + 100 retrieved_memory_final = retrieve_from_memory(response_1_5b) context_final = "\n".join([f"- {mem}" for mem in retrieved_memory_final]) if retrieved_memory_final else "No relevant context found in memory." # Use user-provided prompt template for final model (currently using 7B prompt for both 7B and 14B for simplicity, you can create a separate 14B prompt if needed) prompt_final = prompt_7b_template.format(response_1_5b=response_1_5b, context_7b=context_final) # Using prompt_7b_template for final stage for now input_ids_final = final_tokenizer.encode(prompt_final, return_tensors="pt").to(final_model.device) output_final = final_model.generate( input_ids_final, max_new_tokens=final_max_new_tokens, temperature=temperature, top_p=top_p, do_sample=True ) response_final = final_tokenizer.decode(output_final[0], skip_special_tokens=True) print(f"{model_stage_name} Response:\n{response_final}") store_in_memory(f"{model_stage_name} Response: {response_final[:200]}...") return response_final # Returns final model's response # --- Gradio ChatInterface --- (with Model Selection Dropdown) def gradio_interface(message, history, temp, top_p, max_tokens, prompt_1_5b_text, prompt_7b_text, final_model_selector): # Added final_model_selector # history is automatically managed by ChatInterface response = swarm_agent_sequential_rag( message, prompt_1_5b_template=prompt_1_5b_text, # Pass prompt templates prompt_7b_template=prompt_7b_text, final_model_size=final_model_selector, # Pass model selection temperature=temp, top_p=top_p, max_new_tokens=int(max_tokens) # Ensure max_tokens is an integer ) return response iface = gr.ChatInterface( # Using ChatInterface now fn=gradio_interface, # Define additional inputs for settings, prompts, and model selection additional_inputs=[ gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature"), # Lowered default temp to 0.5 gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P"), gr.Number(value=300, label="Max Tokens", precision=0), # Use Number for integer tokens gr.Textbox(value=default_prompt_1_5b, lines=10, label="1.5B Model Prompt Template"), # Textbox for 1.5B prompt gr.Textbox(value=default_prompt_7b, lines=10, label="7B Model Prompt Template"), # Textbox for 7B prompt gr.Dropdown(choices=["7B", "14B"], value="7B", label="Final Stage Model (7B or 14B)") # Model selection dropdown ], title="DeepSeek Agent Swarm Chat (ZeroGPU Demo - 2 Models + Model Swap)", # Updated title description="Chat with a DeepSeek agent swarm (1.5B + 7B/14B selectable) with shared memory, adjustable settings, **customizable prompts, and model swapping!** **GPU accelerated using ZeroGPU!** (Requires Pro Space)", # Updated description ) if __name__ == "__main__": iface.launch() # Only launch locally if running this script directly