File size: 13,684 Bytes
b86b824
 
 
 
 
 
 
e8e74ae
b86b824
e8e74ae
 
 
 
 
 
 
b86b824
e8e74ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86b824
e8e74ae
 
 
 
 
b86b824
 
 
e8e74ae
b86b824
 
 
 
 
 
 
 
 
e8e74ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86b824
 
e8e74ae
b86b824
e8e74ae
 
b86b824
e8e74ae
 
b86b824
e8e74ae
b86b824
e8e74ae
 
 
 
 
 
 
 
 
b86b824
e8e74ae
 
 
 
 
 
 
 
 
 
 
 
b86b824
 
 
b9b01da
b86b824
 
e8e74ae
b86b824
 
 
b9b01da
b86b824
e8e74ae
b86b824
 
 
e8e74ae
 
b86b824
 
 
e8e74ae
 
 
 
b86b824
e8e74ae
b86b824
e8e74ae
b9b01da
 
e8e74ae
 
 
 
 
 
 
 
 
 
 
 
 
 
b86b824
e8e74ae
 
 
b86b824
e8e74ae
b86b824
b9b01da
b86b824
 
e8e74ae
b86b824
 
 
b9b01da
b86b824
e8e74ae
b86b824
 
 
e8e74ae
 
b86b824
 
 
e8e74ae
 
 
 
 
 
 
b86b824
b9b01da
 
e8e74ae
 
 
 
 
 
 
 
 
 
 
 
 
 
b86b824
e8e74ae
b86b824
 
 
 
e8e74ae
 
 
 
b86b824
 
e8e74ae
b86b824
 
e8e74ae
b86b824
 
e8e74ae
b86b824
 
 
e8e74ae
b86b824
 
 
 
e8e74ae
 
 
 
b86b824
e8e74ae
 
 
 
 
 
 
 
 
b86b824
e8e74ae
b86b824
 
 
e8e74ae
b9b01da
 
 
 
 
 
 
 
 
 
 
b86b824
 
 
 
 
 
 
6ff60a4
 
b86b824
 
 
 
 
e8e74ae
b86b824
b9b01da
e8e74ae
 
 
b9b01da
e8e74ae
b86b824
 
 
b9b01da
b86b824
 
e8e74ae
b86b824
 
 
 
 
 
 
 
 
 
e8e74ae
b86b824
b9b01da
e8e74ae
 
 
b9b01da
e8e74ae
b86b824
 
 
b9b01da
b86b824
 
e8e74ae
b86b824
 
 
e8e74ae
b86b824
 
e8e74ae
b86b824
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gradio as gr
import json
import os
from pathlib import Path
from PIL import Image
import shutil
from ultralytics import YOLO
import requests

# Constants
MODELS_DIR = "models"
MODELS_INFO_FILE = "models_info.json"
TEMP_DIR = "temp"
OUTPUT_DIR = "outputs"

def download_file(url, dest_path):
    """
    Download a file from a URL to the destination path.
    
    Args:
        url (str): The URL to download from.
        dest_path (str): The local path to save the file.
    
    Returns:
        bool: True if download succeeded, False otherwise.
    """
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()  # Raise an error on bad status
        with open(dest_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        print(f"Downloaded {url} to {dest_path}.")
        return True
    except Exception as e:
        print(f"Failed to download {url}. Error: {e}")
        return False

def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
    """
    Load YOLO models and their information from the specified directory and JSON file.
    Downloads models if they are not already present.
    
    Args:
        models_dir (str): Path to the models directory.
        info_file (str): Path to the JSON file containing model info.
    
    Returns:
        dict: A dictionary of models and their associated information.
    """
    with open(info_file, 'r') as f:
        models_info = json.load(f)
    
    models = {}
    for model_info in models_info:
        model_name = model_info['model_name']
        display_name = model_info.get('display_name', model_name)
        model_dir = os.path.join(models_dir, model_name)
        os.makedirs(model_dir, exist_ok=True)
        model_path = os.path.join(model_dir, f"{model_name}.pt")  # e.g., models/human/human.pt
        download_url = model_info['download_url']
        
        # Check if the model file exists
        if not os.path.isfile(model_path):
            print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
            success = download_file(download_url, model_path)
            if not success:
                print(f"Skipping model '{display_name}' due to download failure.")
                continue  # Skip loading this model
        
        try:
            # Load the YOLO model
            model = YOLO(model_path)
            models[model_name] = {
                'display_name': display_name,
                'model': model,
                'info': model_info
            }
            print(f"Loaded model '{display_name}' from '{model_path}'.")
        except Exception as e:
            print(f"Error loading model '{display_name}': {e}")
    
    return models

def get_model_info(model_info):
    """
    Retrieve formatted model information for display.
    
    Args:
        model_info (dict): The model's information dictionary.
    
    Returns:
        str: A formatted string containing model details.
    """
    info = model_info
    class_ids = info.get('class_ids', {})
    class_image_counts = info.get('class_image_counts', {})
    datasets_used = info.get('datasets_used', [])
    
    class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
    class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
    datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
    
    info_text = (
        f"**{info.get('display_name', 'Model Name')}**\n\n"
        f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
        f"**Training Epochs:** {info.get('training_epochs', 'N/A')}\n\n"
        f"**Batch Size:** {info.get('batch_size', 'N/A')}\n\n"
        f"**Optimizer:** {info.get('optimizer', 'N/A')}\n\n"
        f"**Learning Rate:** {info.get('learning_rate', 'N/A')}\n\n"
        f"**Data Augmentation Level:** {info.get('data_augmentation_level', 'N/A')}\n\n"
        f"**[email protected]:** {info.get('mAP_score', 'N/A')}\n\n"
        f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
        f"**Class IDs:**\n{class_ids_formatted}\n\n"
        f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
        f"**Class Image Counts:**\n{class_image_counts_formatted}"
    )
    return info_text

def predict_image(model_name, image, confidence, models):
    """
    Perform prediction on an uploaded image using the selected YOLO model.
    
    Args:
        model_name (str): The name of the selected model.
        image (PIL.Image.Image): The uploaded image.
        confidence (float): The confidence threshold for detections.
        models (dict): The dictionary containing models and their info.
    
    Returns:
        tuple: A status message, the processed image, and the path to the output image.
    """
    model_entry = models.get(model_name, {})
    model = model_entry.get('model', None)
    if not model:
        return "Error: Model not found.", None, None
    try:
        # Ensure temporary and output directories exist
        os.makedirs(TEMP_DIR, exist_ok=True)
        os.makedirs(OUTPUT_DIR, exist_ok=True)
        
        # Save the uploaded image to a temporary path
        input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
        image.save(input_image_path)
        
        # Perform prediction with user-specified confidence
        results = model(input_image_path, save=True, save_txt=False, conf=confidence)
        
        # Determine the output path
        # Ultralytics YOLO saves the results in 'runs/detect/predict' by default
        # We'll move the result to OUTPUT_DIR with a unique name
        latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
        output_image_path = os.path.join(latest_run, Path(input_image_path).name)
        if not os.path.isfile(output_image_path):
            # Alternative method to get the output path
            output_image_path = results[0].save()[0]
        
        # Copy the output image to OUTPUT_DIR
        final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
        shutil.copy(output_image_path, final_output_path)
        
        # Open the output image
        output_image = Image.open(final_output_path)
        
        return "βœ… Prediction completed successfully.", output_image, final_output_path
    except Exception as e:
        return f"❌ Error during prediction: {str(e)}", None, None

def predict_video(model_name, video, confidence, models):
    """
    Perform prediction on an uploaded video using the selected YOLO model.
    
    Args:
        model_name (str): The name of the selected model.
        video (str): Path to the uploaded video file.
        confidence (float): The confidence threshold for detections.
        models (dict): The dictionary containing models and their info.
    
    Returns:
        tuple: A status message, the processed video, and the path to the output video.
    """
    model_entry = models.get(model_name, {})
    model = model_entry.get('model', None)
    if not model:
        return "Error: Model not found.", None, None
    try:
        # Ensure temporary and output directories exist
        os.makedirs(TEMP_DIR, exist_ok=True)
        os.makedirs(OUTPUT_DIR, exist_ok=True)
        
        # Save the uploaded video to a temporary path
        input_video_path = os.path.join(TEMP_DIR, f"{model_name}_input_video.mp4")
        shutil.copy(video, input_video_path)
        
        # Perform prediction with user-specified confidence
        results = model(input_video_path, save=True, save_txt=False, conf=confidence)
        
        # Determine the output path
        # Ultralytics YOLO saves the results in 'runs/detect/predict' by default
        latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
        output_video_path = os.path.join(latest_run, Path(input_video_path).name)
        if not os.path.isfile(output_video_path):
            # Alternative method to get the output path
            output_video_path = results[0].save()[0]
        
        # Copy the output video to OUTPUT_DIR
        final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_video.mp4")
        shutil.copy(output_video_path, final_output_path)
        
        return "βœ… Prediction completed successfully.", final_output_path, final_output_path
    except Exception as e:
        return f"❌ Error during prediction: {str(e)}", None, None

def main():
    # Load the models and their information
    models = load_models()
    if not models:
        print("No models loaded. Please check your models_info.json and model URLs.")
        return
    
    # Initialize Gradio Blocks interface
    with gr.Blocks() as demo:
        gr.Markdown("# πŸ§ͺ YOLOv11 Model Tester")
        gr.Markdown(
            """
            Upload images or videos to test different YOLOv11 models. Select a model from the dropdown to see its details.
            """
        )
        
        # Model selection and info
        with gr.Row():
            model_dropdown = gr.Dropdown(
                choices=[models[m]['display_name'] for m in models],
                label="Select Model",
                value=None
            )
            model_info = gr.Markdown("**Model Information will appear here.**")
        
        # Mapping from display_name to model_name
        display_to_name = {models[m]['display_name']: m for m in models}
        
        # Update model_info when a model is selected
        def update_model_info(selected_display_name):
            if not selected_display_name:
                return "Please select a model."
            model_name = display_to_name.get(selected_display_name)
            if not model_name:
                return "Model information not available."
            model_entry = models[model_name]['info']
            return get_model_info(model_entry)
        
        model_dropdown.change(
            fn=update_model_info,
            inputs=model_dropdown,
            outputs=model_info
        )
        
        # Confidence Threshold Slider
        with gr.Row():
            confidence_slider = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.25,
                label="Confidence Threshold",
                info="Adjust the minimum confidence required for detections to be displayed."
            )
        
        # Tabs for different input types
        with gr.Tabs():
            # Image Prediction Tab
            with gr.Tab("πŸ–ΌοΈ Image"):
                with gr.Column():
                    image_input = gr.Image(
                        type='pil',
                        label="Upload Image for Prediction"
                        # Removed 'tool' parameter
                    )
                    image_predict_btn = gr.Button("πŸ” Predict on Image")
                    image_status = gr.Markdown("**Status will appear here.**")
                    image_output = gr.Image(label="Predicted Image")
                    image_download_btn = gr.File(label="⬇️ Download Predicted Image")
                
                # Define the image prediction function
                def process_image(selected_display_name, image, confidence):
                    if not selected_display_name:
                        return "❌ Please select a model.", None, None
                    model_name = display_to_name.get(selected_display_name)
                    return predict_image(model_name, image, confidence, models)
                
                # Connect the predict button
                image_predict_btn.click(
                    fn=process_image,
                    inputs=[model_dropdown, image_input, confidence_slider],
                    outputs=[image_status, image_output, image_download_btn]
                )
            
            # Video Prediction Tab
            with gr.Tab("πŸŽ₯ Video"):
                with gr.Column():
                    video_input = gr.Video(
                        label="Upload Video for Prediction"
                    )
                    video_predict_btn = gr.Button("πŸ” Predict on Video")
                    video_status = gr.Markdown("**Status will appear here.**")
                    video_output = gr.Video(label="Predicted Video")
                    video_download_btn = gr.File(label="⬇️ Download Predicted Video")
                
                # Define the video prediction function
                def process_video(selected_display_name, video, confidence):
                    if not selected_display_name:
                        return "❌ Please select a model.", None, None
                    model_name = display_to_name.get(selected_display_name)
                    return predict_video(model_name, video, confidence, models)
                
                # Connect the predict button
                video_predict_btn.click(
                    fn=process_video,
                    inputs=[model_dropdown, video_input, confidence_slider],
                    outputs=[video_status, video_output, video_download_btn]
                )
        
        gr.Markdown(
            """
            ---
            **Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
            """
        )
    
    # Launch the Gradio app
    demo.launch()

if __name__ == "__main__":
    main()