File size: 8,195 Bytes
b86b824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import json
import os
from pathlib import Path
from PIL import Image
import shutil
from ultralytics import YOLO

def load_models(models_dir='models', info_file='models_info.json'):
    """
    Load YOLO models and their information from the specified directory and JSON file.

    Args:
        models_dir (str): Path to the models directory.
        info_file (str): Path to the JSON file containing model info.

    Returns:
        dict: A dictionary of models and their associated information.
    """
    with open(info_file, 'r') as f:
        models_info = json.load(f)
    
    models = {}
    for model_info in models_info:
        model_name = model_info['model_name']
        model_path = os.path.join(models_dir, model_name, 'best.pt')  # Assuming 'best.pt' as the weight file
        if os.path.isfile(model_path):
            try:
                # Load the YOLO model
                model = YOLO(model_path)
                models[model_name] = {
                    'model': model,
                    'mAP': model_info.get('mAP_score', 'N/A'),
                    'num_images': model_info.get('num_images', 'N/A')
                }
                print(f"Loaded model '{model_name}' from '{model_path}'.")
            except Exception as e:
                print(f"Error loading model '{model_name}': {e}")
        else:
            print(f"Model weight file for '{model_name}' not found at '{model_path}'. Skipping.")
    return models

def get_model_info(model_name, models):
    """
    Retrieve model information for the selected model.

    Args:
        model_name (str): The name of the model.
        models (dict): The dictionary containing models and their info.

    Returns:
        str: A formatted string containing model information.
    """
    model_info = models.get(model_name, {})
    if not model_info:
        return "Model information not available."
    info_text = (
        f"**Model Name:** {model_name}\n\n"
        f"**mAP Score:** {model_info.get('mAP', 'N/A')}\n\n"
        f"**Number of Images Trained On:** {model_info.get('num_images', 'N/A')}"
    )
    return info_text

def predict_image(model_name, image, models):
    """
    Perform prediction on an uploaded image using the selected YOLO model.

    Args:
        model_name (str): The name of the selected model.
        image (PIL.Image.Image): The uploaded image.
        models (dict): The dictionary containing models and their info.

    Returns:
        tuple: A status message, the processed image, and the path to the output image.
    """
    model = models.get(model_name, {}).get('model', None)
    if not model:
        return "Error: Model not found.", None, None
    try:
        # Save the uploaded image to a temporary path
        input_image_path = f"temp/{model_name}_input_image.jpg"
        os.makedirs(os.path.dirname(input_image_path), exist_ok=True)
        image.save(input_image_path)

        # Perform prediction
        results = model(input_image_path, save=True, save_txt=False, conf=0.25)
        # Ultralytics saves the result images in 'runs/detect/predict'
        output_image_path = results[0].save()[0]  # Get the path to the saved image

        # Open the output image
        output_image = Image.open(output_image_path)

        return "Prediction completed successfully.", output_image, output_image_path
    except Exception as e:
        return f"Error during prediction: {str(e)}", None, None

def predict_video(model_name, video, models):
    """
    Perform prediction on an uploaded video using the selected YOLO model.

    Args:
        model_name (str): The name of the selected model.
        video (str): Path to the uploaded video file.
        models (dict): The dictionary containing models and their info.

    Returns:
        tuple: A status message, the processed video, and the path to the output video.
    """
    model = models.get(model_name, {}).get('model', None)
    if not model:
        return "Error: Model not found.", None, None
    try:
        # Ensure the video is saved in a temporary location
        input_video_path = video.name
        if not os.path.isfile(input_video_path):
            # If the video is a temp file provided by Gradio
            shutil.copy(video.name, input_video_path)
        
        # Perform prediction
        results = model(input_video_path, save=True, save_txt=False, conf=0.25)
        # Ultralytics saves the result videos in 'runs/detect/predict'
        output_video_path = results[0].save()[0]  # Get the path to the saved video

        return "Prediction completed successfully.", output_video_path, output_video_path
    except Exception as e:
        return f"Error during prediction: {str(e)}", None, None

def main():
    # Load the models and their information
    models = load_models()

    # Initialize Gradio Blocks interface
    with gr.Blocks() as demo:
        gr.Markdown("# πŸ§ͺ YOLO Model Tester")

        gr.Markdown(
            """
            Upload images or videos to test different YOLO models. Select a model from the dropdown to see its details.
            """
        )

        # Model selection and info
        with gr.Row():
            model_dropdown = gr.Dropdown(
                choices=list(models.keys()),
                label="Select Model",
                value=None
            )
            model_info = gr.Markdown("**Model Information will appear here.**")

        # Update model_info when a model is selected
        model_dropdown.change(
            fn=lambda model_name: get_model_info(model_name, models) if model_name else "Please select a model.",
            inputs=model_dropdown,
            outputs=model_info
        )

        # Tabs for different input types
        with gr.Tabs():
            # Image Prediction Tab
            with gr.Tab("πŸ–ΌοΈ Image"):
                with gr.Column():
                    image_input = gr.Image(
                        type='pil',
                        label="Upload Image for Prediction",
                        tool="editor"
                    )
                    image_predict_btn = gr.Button("πŸ” Predict on Image")
                    image_status = gr.Markdown("**Status will appear here.**")
                    image_output = gr.Image(label="Predicted Image")
                    image_download_btn = gr.File(label="⬇️ Download Predicted Image")

                # Define the image prediction function
                def process_image(model_name, image):
                    return predict_image(model_name, image, models)

                # Connect the predict button
                image_predict_btn.click(
                    fn=process_image,
                    inputs=[model_dropdown, image_input],
                    outputs=[image_status, image_output, image_download_btn]
                )

            # Video Prediction Tab
            with gr.Tab("πŸŽ₯ Video"):
                with gr.Column():
                    video_input = gr.Video(
                        label="Upload Video for Prediction"
                    )
                    video_predict_btn = gr.Button("πŸ” Predict on Video")
                    video_status = gr.Markdown("**Status will appear here.**")
                    video_output = gr.Video(label="Predicted Video")
                    video_download_btn = gr.File(label="⬇️ Download Predicted Video")

                # Define the video prediction function
                def process_video(model_name, video):
                    return predict_video(model_name, video, models)

                # Connect the predict button
                video_predict_btn.click(
                    fn=process_video,
                    inputs=[model_dropdown, video_input],
                    outputs=[video_status, video_output, video_download_btn]
                )

        gr.Markdown(
            """
            ---
            **Note:** Ensure that the YOLO models are correctly placed in the `models/` directory and that `models_info.json` is properly configured.
            """
        )

    # Launch the Gradio app
    demo.launch()

if __name__ == "__main__":
    main()