Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,11 @@ from PIL import Image
|
|
6 |
import shutil
|
7 |
from ultralytics import YOLO
|
8 |
import requests
|
9 |
-
import zipfile
|
10 |
-
import uuid
|
11 |
|
12 |
-
# Constants
|
13 |
MODELS_DIR = "models"
|
14 |
MODELS_INFO_FILE = "models_info.json"
|
15 |
TEMP_DIR = "temp"
|
16 |
OUTPUT_DIR = "outputs"
|
17 |
-
ZIP_DIR = "zips"
|
18 |
|
19 |
def download_file(url, dest_path):
|
20 |
"""
|
@@ -29,7 +25,7 @@ def download_file(url, dest_path):
|
|
29 |
"""
|
30 |
try:
|
31 |
response = requests.get(url, stream=True)
|
32 |
-
response.raise_for_status()
|
33 |
with open(dest_path, 'wb') as f:
|
34 |
for chunk in response.iter_content(chunk_size=8192):
|
35 |
f.write(chunk)
|
@@ -60,19 +56,18 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
60 |
display_name = model_info.get('display_name', model_name)
|
61 |
model_dir = os.path.join(models_dir, model_name)
|
62 |
os.makedirs(model_dir, exist_ok=True)
|
63 |
-
model_path = os.path.join(model_dir, f"{model_name}.pt")
|
64 |
download_url = model_info['download_url']
|
65 |
|
66 |
-
# Check if the model file exists
|
67 |
if not os.path.isfile(model_path):
|
68 |
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
|
69 |
success = download_file(download_url, model_path)
|
70 |
if not success:
|
71 |
print(f"Skipping model '{display_name}' due to download failure.")
|
72 |
-
continue
|
73 |
|
74 |
try:
|
75 |
-
|
76 |
model = YOLO(model_path)
|
77 |
models[model_name] = {
|
78 |
'display_name': display_name,
|
@@ -120,108 +115,103 @@ def get_model_info(model_info):
|
|
120 |
)
|
121 |
return info_text
|
122 |
|
123 |
-
def
|
124 |
"""
|
125 |
-
|
126 |
|
127 |
Args:
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
|
131 |
Returns:
|
132 |
-
|
133 |
"""
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
for img_path in processed_image_paths:
|
140 |
-
arcname = os.path.basename(img_path)
|
141 |
-
zipf.write(img_path, arcname)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
"""
|
148 |
-
Perform prediction on uploaded
|
149 |
|
150 |
Args:
|
151 |
model_name (str): The name of the selected model.
|
152 |
-
|
153 |
confidence (float): The confidence threshold for detections.
|
154 |
models (dict): The dictionary containing models and their info.
|
155 |
|
156 |
Returns:
|
157 |
-
tuple: A status message,
|
158 |
"""
|
159 |
model_entry = models.get(model_name, {})
|
160 |
model = model_entry.get('model', None)
|
161 |
if not model:
|
162 |
return "Error: Model not found.", None, None
|
163 |
try:
|
164 |
-
|
165 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
166 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
for idx, image in enumerate(images):
|
172 |
-
# Generate unique filenames to avoid conflicts
|
173 |
-
unique_id = uuid.uuid4().hex
|
174 |
-
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image_{unique_id}.jpg")
|
175 |
-
output_image_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image_{unique_id}.jpg")
|
176 |
-
|
177 |
-
# Save the uploaded image to a temporary path
|
178 |
-
image.save(input_image_path)
|
179 |
|
180 |
-
|
181 |
-
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
detected_image_path = os.path.join(latest_run, Path(input_image_path).name)
|
187 |
|
188 |
-
|
189 |
-
# Alternative method to get the output path
|
190 |
-
detected_image_path = results[0].save()[0]
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
processed_image_paths.append(output_image_path)
|
195 |
-
|
196 |
-
# Open the processed image for display
|
197 |
-
processed_image = Image.open(output_image_path)
|
198 |
-
processed_images.append(processed_image)
|
199 |
-
|
200 |
-
# Create a ZIP file containing all processed images
|
201 |
-
zip_path = zip_processed_images(processed_image_paths, model_name)
|
202 |
-
|
203 |
-
return "β
Prediction completed successfully.", processed_images, zip_path
|
204 |
|
|
|
205 |
except Exception as e:
|
206 |
return f"β Error during prediction: {str(e)}", None, None
|
207 |
|
208 |
def main():
|
209 |
-
|
210 |
models = load_models()
|
211 |
if not models:
|
212 |
print("No models loaded. Please check your models_info.json and model URLs.")
|
213 |
return
|
214 |
|
215 |
-
# Initialize Gradio Blocks interface
|
216 |
with gr.Blocks() as demo:
|
217 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
218 |
gr.Markdown(
|
219 |
"""
|
220 |
-
Upload
|
221 |
"""
|
222 |
)
|
223 |
|
224 |
-
# Model selection and info
|
225 |
with gr.Row():
|
226 |
model_dropdown = gr.Dropdown(
|
227 |
choices=[models[m]['display_name'] for m in models],
|
@@ -230,10 +220,8 @@ def main():
|
|
230 |
)
|
231 |
model_info = gr.Markdown("**Model Information will appear here.**")
|
232 |
|
233 |
-
# Mapping from display_name to model_name
|
234 |
display_to_name = {models[m]['display_name']: m for m in models}
|
235 |
|
236 |
-
# Update model_info when a model is selected
|
237 |
def update_model_info(selected_display_name):
|
238 |
if not selected_display_name:
|
239 |
return "Please select a model."
|
@@ -249,7 +237,6 @@ def main():
|
|
249 |
outputs=model_info
|
250 |
)
|
251 |
|
252 |
-
# Confidence Threshold Slider
|
253 |
with gr.Row():
|
254 |
confidence_slider = gr.Slider(
|
255 |
minimum=0.0,
|
@@ -260,33 +247,53 @@ def main():
|
|
260 |
info="Adjust the minimum confidence required for detections to be displayed."
|
261 |
)
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
with gr.
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
-
image_predict_btn = gr.Button("π Predict on Images")
|
271 |
-
image_status = gr.Markdown("**Status will appear here.**")
|
272 |
-
image_gallery = gr.Gallery(label="Predicted Images").style(grid=[2], height="auto")
|
273 |
-
image_download_btn = gr.File(label="β¬οΈ Download All Processed Images (ZIP)")
|
274 |
-
|
275 |
-
# Define the image prediction function
|
276 |
-
def process_image(selected_display_name, images, confidence):
|
277 |
-
if not selected_display_name:
|
278 |
-
return "β Please select a model.", None, None
|
279 |
-
if not images:
|
280 |
-
return "β Please upload at least one image.", None, None
|
281 |
-
model_name = display_to_name.get(selected_display_name)
|
282 |
-
return predict_image(model_name, images, confidence, models)
|
283 |
-
|
284 |
-
# Connect the predict button
|
285 |
-
image_predict_btn.click(
|
286 |
-
fn=process_image,
|
287 |
-
inputs=[model_dropdown, image_input, confidence_slider],
|
288 |
-
outputs=[image_status, image_gallery, image_download_btn]
|
289 |
-
)
|
290 |
|
291 |
gr.Markdown(
|
292 |
"""
|
@@ -295,8 +302,7 @@ def main():
|
|
295 |
"""
|
296 |
)
|
297 |
|
298 |
-
# Launch the Gradio app
|
299 |
demo.launch()
|
300 |
|
301 |
if __name__ == "__main__":
|
302 |
-
main()
|
|
|
6 |
import shutil
|
7 |
from ultralytics import YOLO
|
8 |
import requests
|
|
|
|
|
9 |
|
|
|
10 |
MODELS_DIR = "models"
|
11 |
MODELS_INFO_FILE = "models_info.json"
|
12 |
TEMP_DIR = "temp"
|
13 |
OUTPUT_DIR = "outputs"
|
|
|
14 |
|
15 |
def download_file(url, dest_path):
|
16 |
"""
|
|
|
25 |
"""
|
26 |
try:
|
27 |
response = requests.get(url, stream=True)
|
28 |
+
response.raise_for_status()
|
29 |
with open(dest_path, 'wb') as f:
|
30 |
for chunk in response.iter_content(chunk_size=8192):
|
31 |
f.write(chunk)
|
|
|
56 |
display_name = model_info.get('display_name', model_name)
|
57 |
model_dir = os.path.join(models_dir, model_name)
|
58 |
os.makedirs(model_dir, exist_ok=True)
|
59 |
+
model_path = os.path.join(model_dir, f"{model_name}.pt")
|
60 |
download_url = model_info['download_url']
|
61 |
|
|
|
62 |
if not os.path.isfile(model_path):
|
63 |
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
|
64 |
success = download_file(download_url, model_path)
|
65 |
if not success:
|
66 |
print(f"Skipping model '{display_name}' due to download failure.")
|
67 |
+
continue
|
68 |
|
69 |
try:
|
70 |
+
|
71 |
model = YOLO(model_path)
|
72 |
models[model_name] = {
|
73 |
'display_name': display_name,
|
|
|
115 |
)
|
116 |
return info_text
|
117 |
|
118 |
+
def predict_image(model_name, image, confidence, models):
|
119 |
"""
|
120 |
+
Perform prediction on an uploaded image using the selected YOLO model.
|
121 |
|
122 |
Args:
|
123 |
+
model_name (str): The name of the selected model.
|
124 |
+
image (PIL.Image.Image): The uploaded image.
|
125 |
+
confidence (float): The confidence threshold for detections.
|
126 |
+
models (dict): The dictionary containing models and their info.
|
127 |
|
128 |
Returns:
|
129 |
+
tuple: A status message, the processed image, and the path to the output image.
|
130 |
"""
|
131 |
+
model_entry = models.get(model_name, {})
|
132 |
+
model = model_entry.get('model', None)
|
133 |
+
if not model:
|
134 |
+
return "Error: Model not found.", None, None
|
135 |
+
try:
|
136 |
+
|
137 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
138 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
139 |
+
|
140 |
+
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
|
141 |
+
image.save(input_image_path)
|
142 |
+
|
143 |
+
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
|
144 |
+
|
145 |
+
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
146 |
+
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
|
147 |
+
if not os.path.isfile(output_image_path):
|
148 |
|
149 |
+
output_image_path = results[0].save()[0]
|
|
|
|
|
|
|
150 |
|
151 |
+
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
|
152 |
+
shutil.copy(output_image_path, final_output_path)
|
153 |
|
154 |
+
output_image = Image.open(final_output_path)
|
155 |
+
|
156 |
+
return "β
Prediction completed successfully.", output_image, final_output_path
|
157 |
+
except Exception as e:
|
158 |
+
return f"β Error during prediction: {str(e)}", None, None
|
159 |
+
|
160 |
+
def predict_video(model_name, video, confidence, models):
|
161 |
"""
|
162 |
+
Perform prediction on an uploaded video using the selected YOLO model.
|
163 |
|
164 |
Args:
|
165 |
model_name (str): The name of the selected model.
|
166 |
+
video (str): Path to the uploaded video file.
|
167 |
confidence (float): The confidence threshold for detections.
|
168 |
models (dict): The dictionary containing models and their info.
|
169 |
|
170 |
Returns:
|
171 |
+
tuple: A status message, the processed video, and the path to the output video.
|
172 |
"""
|
173 |
model_entry = models.get(model_name, {})
|
174 |
model = model_entry.get('model', None)
|
175 |
if not model:
|
176 |
return "Error: Model not found.", None, None
|
177 |
try:
|
178 |
+
|
179 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
180 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
181 |
|
182 |
+
input_video_path = os.path.join(TEMP_DIR, f"{model_name}_input_video.mp4")
|
183 |
+
shutil.copy(video, input_video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
results = model(input_video_path, save=True, save_txt=False, conf=confidence)
|
|
|
186 |
|
187 |
+
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
188 |
+
output_video_path = os.path.join(latest_run, Path(input_video_path).name)
|
189 |
+
if not os.path.isfile(output_video_path):
|
|
|
190 |
|
191 |
+
output_video_path = results[0].save()[0]
|
|
|
|
|
192 |
|
193 |
+
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_video.mp4")
|
194 |
+
shutil.copy(output_video_path, final_output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
return "β
Prediction completed successfully.", final_output_path, final_output_path
|
197 |
except Exception as e:
|
198 |
return f"β Error during prediction: {str(e)}", None, None
|
199 |
|
200 |
def main():
|
201 |
+
|
202 |
models = load_models()
|
203 |
if not models:
|
204 |
print("No models loaded. Please check your models_info.json and model URLs.")
|
205 |
return
|
206 |
|
|
|
207 |
with gr.Blocks() as demo:
|
208 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
209 |
gr.Markdown(
|
210 |
"""
|
211 |
+
Upload images or videos to test different YOLOv11 models. Select a model from the dropdown to see its details.
|
212 |
"""
|
213 |
)
|
214 |
|
|
|
215 |
with gr.Row():
|
216 |
model_dropdown = gr.Dropdown(
|
217 |
choices=[models[m]['display_name'] for m in models],
|
|
|
220 |
)
|
221 |
model_info = gr.Markdown("**Model Information will appear here.**")
|
222 |
|
|
|
223 |
display_to_name = {models[m]['display_name']: m for m in models}
|
224 |
|
|
|
225 |
def update_model_info(selected_display_name):
|
226 |
if not selected_display_name:
|
227 |
return "Please select a model."
|
|
|
237 |
outputs=model_info
|
238 |
)
|
239 |
|
|
|
240 |
with gr.Row():
|
241 |
confidence_slider = gr.Slider(
|
242 |
minimum=0.0,
|
|
|
247 |
info="Adjust the minimum confidence required for detections to be displayed."
|
248 |
)
|
249 |
|
250 |
+
with gr.Tabs():
|
251 |
+
|
252 |
+
with gr.Tab("πΌοΈ Image"):
|
253 |
+
with gr.Column():
|
254 |
+
image_input = gr.Image(
|
255 |
+
type='pil',
|
256 |
+
label="Upload Image for Prediction"
|
257 |
+
|
258 |
+
)
|
259 |
+
image_predict_btn = gr.Button("π Predict on Image")
|
260 |
+
image_status = gr.Markdown("**Status will appear here.**")
|
261 |
+
image_output = gr.Image(label="Predicted Image")
|
262 |
+
image_download_btn = gr.File(label="β¬οΈ Download Predicted Image")
|
263 |
+
|
264 |
+
def process_image(selected_display_name, image, confidence):
|
265 |
+
if not selected_display_name:
|
266 |
+
return "β Please select a model.", None, None
|
267 |
+
model_name = display_to_name.get(selected_display_name)
|
268 |
+
return predict_image(model_name, image, confidence, models)
|
269 |
+
|
270 |
+
image_predict_btn.click(
|
271 |
+
fn=process_image,
|
272 |
+
inputs=[model_dropdown, image_input, confidence_slider],
|
273 |
+
outputs=[image_status, image_output, image_download_btn]
|
274 |
+
)
|
275 |
+
|
276 |
+
with gr.Tab("π₯ Video"):
|
277 |
+
with gr.Column():
|
278 |
+
video_input = gr.Video(
|
279 |
+
label="Upload Video for Prediction"
|
280 |
+
)
|
281 |
+
video_predict_btn = gr.Button("π Predict on Video")
|
282 |
+
video_status = gr.Markdown("**Status will appear here.**")
|
283 |
+
video_output = gr.Video(label="Predicted Video")
|
284 |
+
video_download_btn = gr.File(label="β¬οΈ Download Predicted Video")
|
285 |
+
|
286 |
+
def process_video(selected_display_name, video, confidence):
|
287 |
+
if not selected_display_name:
|
288 |
+
return "β Please select a model.", None, None
|
289 |
+
model_name = display_to_name.get(selected_display_name)
|
290 |
+
return predict_video(model_name, video, confidence, models)
|
291 |
+
|
292 |
+
video_predict_btn.click(
|
293 |
+
fn=process_video,
|
294 |
+
inputs=[model_dropdown, video_input, confidence_slider],
|
295 |
+
outputs=[video_status, video_output, video_download_btn]
|
296 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
gr.Markdown(
|
299 |
"""
|
|
|
302 |
"""
|
303 |
)
|
304 |
|
|
|
305 |
demo.launch()
|
306 |
|
307 |
if __name__ == "__main__":
|
308 |
+
main()
|