Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,19 +7,23 @@ import shutil
|
|
7 |
from ultralytics import YOLO
|
8 |
import requests
|
9 |
|
|
|
10 |
MODELS_DIR = "models"
|
11 |
MODELS_INFO_FILE = "models_info.json"
|
12 |
TEMP_DIR = "temp"
|
13 |
OUTPUT_DIR = "outputs"
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
def download_file(url, dest_path):
|
16 |
"""
|
17 |
Download a file from a URL to the destination path.
|
18 |
-
|
19 |
Args:
|
20 |
url (str): The URL to download from.
|
21 |
dest_path (str): The local path to save the file.
|
22 |
-
|
23 |
Returns:
|
24 |
bool: True if download succeeded, False otherwise.
|
25 |
"""
|
@@ -39,11 +43,9 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
39 |
"""
|
40 |
Load YOLO models and their information from the specified directory and JSON file.
|
41 |
Downloads models if they are not already present.
|
42 |
-
|
43 |
Args:
|
44 |
models_dir (str): Path to the models directory.
|
45 |
info_file (str): Path to the JSON file containing model info.
|
46 |
-
|
47 |
Returns:
|
48 |
dict: A dictionary of models and their associated information.
|
49 |
"""
|
@@ -67,7 +69,6 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
67 |
continue
|
68 |
|
69 |
try:
|
70 |
-
|
71 |
model = YOLO(model_path)
|
72 |
models[model_name] = {
|
73 |
'display_name': display_name,
|
@@ -80,15 +81,14 @@ def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
|
|
80 |
|
81 |
return models
|
82 |
|
83 |
-
def get_model_info(model_info):
|
84 |
"""
|
85 |
-
Retrieve formatted model information for display.
|
86 |
-
|
87 |
Args:
|
88 |
model_info (dict): The model's information dictionary.
|
89 |
-
|
90 |
Returns:
|
91 |
-
str: A formatted string containing model details.
|
92 |
"""
|
93 |
info = model_info
|
94 |
class_ids = info.get('class_ids', {})
|
@@ -99,6 +99,11 @@ def get_model_info(model_info):
|
|
99 |
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
|
100 |
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
|
101 |
|
|
|
|
|
|
|
|
|
|
|
102 |
info_text = (
|
103 |
f"**{info.get('display_name', 'Model Name')}**\n\n"
|
104 |
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
|
@@ -111,20 +116,19 @@ def get_model_info(model_info):
|
|
111 |
f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
|
112 |
f"**Class IDs:**\n{class_ids_formatted}\n\n"
|
113 |
f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
|
114 |
-
f"**Class Image Counts:**\n{class_image_counts_formatted}"
|
|
|
115 |
)
|
116 |
return info_text
|
117 |
|
118 |
def predict_image(model_name, image, confidence, models):
|
119 |
"""
|
120 |
Perform prediction on an uploaded image using the selected YOLO model.
|
121 |
-
|
122 |
Args:
|
123 |
model_name (str): The name of the selected model.
|
124 |
image (PIL.Image.Image): The uploaded image.
|
125 |
confidence (float): The confidence threshold for detections.
|
126 |
models (dict): The dictionary containing models and their info.
|
127 |
-
|
128 |
Returns:
|
129 |
tuple: A status message, the processed image, and the path to the output image.
|
130 |
"""
|
@@ -133,7 +137,6 @@ def predict_image(model_name, image, confidence, models):
|
|
133 |
if not model:
|
134 |
return "Error: Model not found.", None, None
|
135 |
try:
|
136 |
-
|
137 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
138 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
139 |
|
@@ -145,7 +148,6 @@ def predict_image(model_name, image, confidence, models):
|
|
145 |
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
146 |
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
|
147 |
if not os.path.isfile(output_image_path):
|
148 |
-
|
149 |
output_image_path = results[0].save()[0]
|
150 |
|
151 |
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
|
@@ -153,17 +155,86 @@ def predict_image(model_name, image, confidence, models):
|
|
153 |
|
154 |
output_image = Image.open(final_output_path)
|
155 |
|
156 |
-
|
|
|
|
|
157 |
except Exception as e:
|
158 |
return f"β Error during prediction: {str(e)}", None, None
|
159 |
|
160 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
|
|
|
|
162 |
models = load_models()
|
163 |
if not models:
|
164 |
print("No models loaded. Please check your models_info.json and model URLs.")
|
165 |
return
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
with gr.Blocks() as demo:
|
168 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
169 |
gr.Markdown(
|
@@ -172,6 +243,15 @@ def main():
|
|
172 |
"""
|
173 |
)
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
with gr.Row():
|
176 |
model_dropdown = gr.Dropdown(
|
177 |
choices=[models[m]['display_name'] for m in models],
|
@@ -189,7 +269,8 @@ def main():
|
|
189 |
if not model_name:
|
190 |
return "Model information not available."
|
191 |
model_entry = models[model_name]['info']
|
192 |
-
|
|
|
193 |
|
194 |
model_dropdown.change(
|
195 |
fn=update_model_info,
|
@@ -212,7 +293,6 @@ def main():
|
|
212 |
image_input = gr.Image(
|
213 |
type='pil',
|
214 |
label="Upload Image for Prediction"
|
215 |
-
|
216 |
)
|
217 |
image_predict_btn = gr.Button("π Predict on Image")
|
218 |
image_status = gr.Markdown("**Status will appear here.**")
|
@@ -223,7 +303,32 @@ def main():
|
|
223 |
if not selected_display_name:
|
224 |
return "β Please select a model.", None, None
|
225 |
model_name = display_to_name.get(selected_display_name)
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
image_predict_btn.click(
|
229 |
fn=process_image,
|
@@ -231,6 +336,107 @@ def main():
|
|
231 |
outputs=[image_status, image_output, image_download_btn]
|
232 |
)
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
gr.Markdown(
|
235 |
"""
|
236 |
---
|
|
|
7 |
from ultralytics import YOLO
|
8 |
import requests
|
9 |
|
10 |
+
# Directory and file configurations
|
11 |
MODELS_DIR = "models"
|
12 |
MODELS_INFO_FILE = "models_info.json"
|
13 |
TEMP_DIR = "temp"
|
14 |
OUTPUT_DIR = "outputs"
|
15 |
|
16 |
+
# New files for storing ratings, detections, and recommended datasets
|
17 |
+
RATINGS_FILE = "ratings.json"
|
18 |
+
DETECTIONS_FILE = "detections.json"
|
19 |
+
RECOMMENDED_DATASETS_FILE = "recommended_datasets.json"
|
20 |
+
|
21 |
def download_file(url, dest_path):
|
22 |
"""
|
23 |
Download a file from a URL to the destination path.
|
|
|
24 |
Args:
|
25 |
url (str): The URL to download from.
|
26 |
dest_path (str): The local path to save the file.
|
|
|
27 |
Returns:
|
28 |
bool: True if download succeeded, False otherwise.
|
29 |
"""
|
|
|
43 |
"""
|
44 |
Load YOLO models and their information from the specified directory and JSON file.
|
45 |
Downloads models if they are not already present.
|
|
|
46 |
Args:
|
47 |
models_dir (str): Path to the models directory.
|
48 |
info_file (str): Path to the JSON file containing model info.
|
|
|
49 |
Returns:
|
50 |
dict: A dictionary of models and their associated information.
|
51 |
"""
|
|
|
69 |
continue
|
70 |
|
71 |
try:
|
|
|
72 |
model = YOLO(model_path)
|
73 |
models[model_name] = {
|
74 |
'display_name': display_name,
|
|
|
81 |
|
82 |
return models
|
83 |
|
84 |
+
def get_model_info(model_info, ratings_info):
|
85 |
"""
|
86 |
+
Retrieve formatted model information for display, including average rating.
|
|
|
87 |
Args:
|
88 |
model_info (dict): The model's information dictionary.
|
89 |
+
ratings_info (dict): The ratings information for the model.
|
90 |
Returns:
|
91 |
+
str: A formatted string containing model details and average rating.
|
92 |
"""
|
93 |
info = model_info
|
94 |
class_ids = info.get('class_ids', {})
|
|
|
99 |
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
|
100 |
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
|
101 |
|
102 |
+
# Calculate average rating
|
103 |
+
total_rating = ratings_info.get('total', 0)
|
104 |
+
count_rating = ratings_info.get('count', 0)
|
105 |
+
average_rating = (total_rating / count_rating) if count_rating > 0 else "No ratings yet"
|
106 |
+
|
107 |
info_text = (
|
108 |
f"**{info.get('display_name', 'Model Name')}**\n\n"
|
109 |
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
|
|
|
116 |
f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
|
117 |
f"**Class IDs:**\n{class_ids_formatted}\n\n"
|
118 |
f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
|
119 |
+
f"**Class Image Counts:**\n{class_image_counts_formatted}\n\n"
|
120 |
+
f"**Average Rating:** {average_rating} β"
|
121 |
)
|
122 |
return info_text
|
123 |
|
124 |
def predict_image(model_name, image, confidence, models):
|
125 |
"""
|
126 |
Perform prediction on an uploaded image using the selected YOLO model.
|
|
|
127 |
Args:
|
128 |
model_name (str): The name of the selected model.
|
129 |
image (PIL.Image.Image): The uploaded image.
|
130 |
confidence (float): The confidence threshold for detections.
|
131 |
models (dict): The dictionary containing models and their info.
|
|
|
132 |
Returns:
|
133 |
tuple: A status message, the processed image, and the path to the output image.
|
134 |
"""
|
|
|
137 |
if not model:
|
138 |
return "Error: Model not found.", None, None
|
139 |
try:
|
|
|
140 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
141 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
142 |
|
|
|
148 |
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
|
149 |
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
|
150 |
if not os.path.isfile(output_image_path):
|
|
|
151 |
output_image_path = results[0].save()[0]
|
152 |
|
153 |
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
|
|
|
155 |
|
156 |
output_image = Image.open(final_output_path)
|
157 |
|
158 |
+
# Calculate number of detections
|
159 |
+
detections = len(results[0].boxes)
|
160 |
+
return f"β
Prediction completed successfully. **Detections:** {detections}", output_image, final_output_path
|
161 |
except Exception as e:
|
162 |
return f"β Error during prediction: {str(e)}", None, None
|
163 |
|
164 |
+
def load_or_initialize_json(file_path, default_data):
|
165 |
+
"""
|
166 |
+
Load JSON data from a file or initialize it with default data if the file doesn't exist.
|
167 |
+
Args:
|
168 |
+
file_path (str): Path to the JSON file.
|
169 |
+
default_data (dict or list): Default data to initialize if file doesn't exist.
|
170 |
+
Returns:
|
171 |
+
dict or list: The loaded or initialized data.
|
172 |
+
"""
|
173 |
+
if os.path.isfile(file_path):
|
174 |
+
with open(file_path, 'r') as f:
|
175 |
+
return json.load(f)
|
176 |
+
else:
|
177 |
+
with open(file_path, 'w') as f:
|
178 |
+
json.dump(default_data, f, indent=4)
|
179 |
+
return default_data
|
180 |
+
|
181 |
+
def save_json(file_path, data):
|
182 |
+
"""
|
183 |
+
Save data to a JSON file.
|
184 |
+
Args:
|
185 |
+
file_path (str): Path to the JSON file.
|
186 |
+
data (dict or list): Data to save.
|
187 |
+
"""
|
188 |
+
with open(file_path, 'w') as f:
|
189 |
+
json.dump(data, f, indent=4)
|
190 |
+
|
191 |
+
def is_valid_roboflow_url(url):
|
192 |
+
"""
|
193 |
+
Validate if the provided URL is a Roboflow URL.
|
194 |
+
Args:
|
195 |
+
url (str): The URL to validate.
|
196 |
+
Returns:
|
197 |
+
bool: True if valid, False otherwise.
|
198 |
+
"""
|
199 |
+
return url.startswith("https://roboflow.com/") or url.startswith("http://roboflow.com/")
|
200 |
+
|
201 |
+
def get_top_model(detections_per_model, models):
|
202 |
+
"""
|
203 |
+
Determine the top model based on the highest number of detections.
|
204 |
+
Args:
|
205 |
+
detections_per_model (dict): Dictionary with model names as keys and detection counts as values.
|
206 |
+
models (dict): Dictionary of loaded models.
|
207 |
+
Returns:
|
208 |
+
str: The display name of the top model or a message if no detections exist.
|
209 |
+
"""
|
210 |
+
if not detections_per_model:
|
211 |
+
return "No detections yet."
|
212 |
+
top_model_name = max(detections_per_model, key=detections_per_model.get)
|
213 |
+
top_model_display = models[top_model_name]['display_name']
|
214 |
+
top_detections = detections_per_model[top_model_name]
|
215 |
+
return f"**Top Model:** {top_model_display} with **{top_detections}** detections."
|
216 |
|
217 |
+
def main():
|
218 |
+
# Load models
|
219 |
models = load_models()
|
220 |
if not models:
|
221 |
print("No models loaded. Please check your models_info.json and model URLs.")
|
222 |
return
|
223 |
|
224 |
+
# Load or initialize ratings
|
225 |
+
ratings_data = load_or_initialize_json(RATINGS_FILE, {})
|
226 |
+
# Initialize ratings for each model if not present
|
227 |
+
for model_name in models:
|
228 |
+
if model_name not in ratings_data:
|
229 |
+
ratings_data[model_name] = {"total": 0, "count": 0}
|
230 |
+
save_json(RATINGS_FILE, ratings_data)
|
231 |
+
|
232 |
+
# Load or initialize detections counter
|
233 |
+
detections_data = load_or_initialize_json(DETECTIONS_FILE, {"total_detections": 0, "detections_per_model": {}})
|
234 |
+
|
235 |
+
# Load or initialize recommended datasets
|
236 |
+
recommended_datasets = load_or_initialize_json(RECOMMENDED_DATASETS_FILE, [])
|
237 |
+
|
238 |
with gr.Blocks() as demo:
|
239 |
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
|
240 |
gr.Markdown(
|
|
|
243 |
"""
|
244 |
)
|
245 |
|
246 |
+
# Display total detections counter and top model
|
247 |
+
with gr.Row():
|
248 |
+
detections_counter = gr.Markdown(
|
249 |
+
f"**Total Detections Across All Users:** {detections_data.get('total_detections', 0)}"
|
250 |
+
)
|
251 |
+
top_model_display = gr.Markdown(
|
252 |
+
get_top_model(detections_data.get('detections_per_model', {}), models)
|
253 |
+
)
|
254 |
+
|
255 |
with gr.Row():
|
256 |
model_dropdown = gr.Dropdown(
|
257 |
choices=[models[m]['display_name'] for m in models],
|
|
|
269 |
if not model_name:
|
270 |
return "Model information not available."
|
271 |
model_entry = models[model_name]['info']
|
272 |
+
ratings_info = ratings_data.get(model_name, {"total": 0, "count": 0})
|
273 |
+
return get_model_info(model_entry, ratings_info)
|
274 |
|
275 |
model_dropdown.change(
|
276 |
fn=update_model_info,
|
|
|
293 |
image_input = gr.Image(
|
294 |
type='pil',
|
295 |
label="Upload Image for Prediction"
|
|
|
296 |
)
|
297 |
image_predict_btn = gr.Button("π Predict on Image")
|
298 |
image_status = gr.Markdown("**Status will appear here.**")
|
|
|
303 |
if not selected_display_name:
|
304 |
return "β Please select a model.", None, None
|
305 |
model_name = display_to_name.get(selected_display_name)
|
306 |
+
status, output_img, output_path = predict_image(model_name, image, confidence, models)
|
307 |
+
|
308 |
+
# Extract number of detections from the status message
|
309 |
+
detections = 0
|
310 |
+
if "Detections:" in status:
|
311 |
+
try:
|
312 |
+
detections = int(status.split("Detections:")[1].strip())
|
313 |
+
except:
|
314 |
+
pass
|
315 |
+
|
316 |
+
# Update detections counter
|
317 |
+
try:
|
318 |
+
detections_data['total_detections'] += detections
|
319 |
+
if model_name in detections_data['detections_per_model']:
|
320 |
+
detections_data['detections_per_model'][model_name] += detections
|
321 |
+
else:
|
322 |
+
detections_data['detections_per_model'][model_name] = detections
|
323 |
+
save_json(DETECTIONS_FILE, detections_data)
|
324 |
+
except Exception as e:
|
325 |
+
print(f"Error updating detections counter: {e}")
|
326 |
+
|
327 |
+
# Update detections and top model display
|
328 |
+
detections_counter.value = f"**Total Detections Across All Users:** {detections_data.get('total_detections', 0)}"
|
329 |
+
top_model_display.value = get_top_model(detections_data.get('detections_per_model', {}), models)
|
330 |
+
|
331 |
+
return status, output_img, output_path
|
332 |
|
333 |
image_predict_btn.click(
|
334 |
fn=process_image,
|
|
|
336 |
outputs=[image_status, image_output, image_download_btn]
|
337 |
)
|
338 |
|
339 |
+
with gr.Tab("β Rate Model"):
|
340 |
+
with gr.Column():
|
341 |
+
selected_model = gr.Dropdown(
|
342 |
+
choices=[models[m]['display_name'] for m in models],
|
343 |
+
label="Select Model to Rate",
|
344 |
+
value=None
|
345 |
+
)
|
346 |
+
rating = gr.Slider(
|
347 |
+
minimum=1,
|
348 |
+
maximum=5,
|
349 |
+
step=1,
|
350 |
+
label="Rate the Model (1-5 Stars)",
|
351 |
+
info="Select a star rating between 1 and 5."
|
352 |
+
)
|
353 |
+
submit_rating_btn = gr.Button("Submit Rating")
|
354 |
+
rating_status = gr.Markdown("**Your rating will be submitted here.**")
|
355 |
+
|
356 |
+
def submit_rating(selected_display_name, user_rating):
|
357 |
+
if not selected_display_name:
|
358 |
+
return "β Please select a model to rate."
|
359 |
+
if not user_rating:
|
360 |
+
return "β Please provide a rating."
|
361 |
+
model_name = display_to_name.get(selected_display_name)
|
362 |
+
if not model_name:
|
363 |
+
return "β Invalid model selected."
|
364 |
+
|
365 |
+
# Update ratings data
|
366 |
+
ratings_info = ratings_data.get(model_name, {"total": 0, "count": 0})
|
367 |
+
ratings_info['total'] += user_rating
|
368 |
+
ratings_info['count'] += 1
|
369 |
+
ratings_data[model_name] = ratings_info
|
370 |
+
save_json(RATINGS_FILE, ratings_data)
|
371 |
+
|
372 |
+
# Update model info display if the rated model is currently selected
|
373 |
+
if model_dropdown.value == selected_display_name:
|
374 |
+
updated_info = get_model_info(models[model_name]['info'], ratings_info)
|
375 |
+
model_info.value = updated_info
|
376 |
+
|
377 |
+
average = (ratings_info['total'] / ratings_info['count'])
|
378 |
+
return f"β
Thank you for rating! Current Average Rating: {average:.2f} β"
|
379 |
+
|
380 |
+
submit_rating_btn.click(
|
381 |
+
fn=submit_rating,
|
382 |
+
inputs=[selected_model, rating],
|
383 |
+
outputs=rating_status
|
384 |
+
)
|
385 |
+
|
386 |
+
with gr.Tab("π‘ Recommend Dataset"):
|
387 |
+
with gr.Column():
|
388 |
+
dataset_name = gr.Textbox(
|
389 |
+
label="Dataset Name",
|
390 |
+
placeholder="Enter the name of the dataset"
|
391 |
+
)
|
392 |
+
dataset_url = gr.Textbox(
|
393 |
+
label="Dataset URL",
|
394 |
+
placeholder="Enter the Roboflow dataset URL"
|
395 |
+
)
|
396 |
+
recommend_btn = gr.Button("Recommend Dataset")
|
397 |
+
recommend_status = gr.Markdown("**Your recommendation status will appear here.**")
|
398 |
+
|
399 |
+
def recommend_dataset(name, url):
|
400 |
+
if not name or not url:
|
401 |
+
return "β Please provide both the dataset name and URL."
|
402 |
+
|
403 |
+
if not is_valid_roboflow_url(url):
|
404 |
+
return "β Invalid URL. Please provide a valid Roboflow dataset URL."
|
405 |
+
|
406 |
+
# Check for duplicates
|
407 |
+
for dataset in recommended_datasets:
|
408 |
+
if dataset['name'].lower() == name.lower() or dataset['url'] == url:
|
409 |
+
return "β This dataset has already been recommended."
|
410 |
+
|
411 |
+
# Add to recommended datasets
|
412 |
+
recommended_datasets.append({"name": name, "url": url})
|
413 |
+
save_json(RECOMMENDED_DATASETS_FILE, recommended_datasets)
|
414 |
+
|
415 |
+
return f"β
Thank you for recommending the dataset **{name}**!"
|
416 |
+
|
417 |
+
recommend_btn.click(
|
418 |
+
fn=recommend_dataset,
|
419 |
+
inputs=[dataset_name, dataset_url],
|
420 |
+
outputs=recommend_status
|
421 |
+
)
|
422 |
+
|
423 |
+
with gr.Tab("π Recommended Datasets"):
|
424 |
+
with gr.Column():
|
425 |
+
recommended_display = gr.Markdown("### Recommended Roboflow Datasets\n")
|
426 |
+
|
427 |
+
def display_recommended_datasets():
|
428 |
+
if not recommended_datasets:
|
429 |
+
return "No datasets have been recommended yet."
|
430 |
+
dataset_md = "\n".join([f"- [{dataset['name']}]({dataset['url']})" for dataset in recommended_datasets])
|
431 |
+
return dataset_md
|
432 |
+
|
433 |
+
# Display the recommended datasets
|
434 |
+
recommended_display.value = display_recommended_datasets()
|
435 |
+
|
436 |
+
with gr.Tab("π Top Model"):
|
437 |
+
with gr.Column():
|
438 |
+
top_model_md = gr.Markdown(get_top_model(detections_data.get('detections_per_model', {}), models))
|
439 |
+
|
440 |
gr.Markdown(
|
441 |
"""
|
442 |
---
|