Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,7 +31,14 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
31 |
ws, proj, ver = parse_roboflow_url(dataset_url)
|
32 |
version_obj = rf.workspace(ws).project(proj).version(ver)
|
33 |
dataset = version_obj.download("coco-segmentation")
|
34 |
-
root = dataset.location # e.g. "/home/user/app/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# 2) search for any JSON file with "train" in its name
|
37 |
ann_file = None
|
@@ -39,6 +46,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
39 |
for fname in filenames:
|
40 |
if 'train' in fname.lower() and fname.lower().endswith('.json'):
|
41 |
ann_file = os.path.join(dirpath, fname)
|
|
|
42 |
break
|
43 |
if ann_file:
|
44 |
break
|
@@ -60,6 +68,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
60 |
lbl_out = os.path.join(out_root, "labels")
|
61 |
os.makedirs(img_out, exist_ok=True)
|
62 |
os.makedirs(lbl_out, exist_ok=True)
|
|
|
63 |
|
64 |
# 6) convert each segmentation annotation to a YOLO bbox line
|
65 |
annos = {}
|
@@ -85,6 +94,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
85 |
for dirpath, _, files in os.walk(root):
|
86 |
if any(f.lower().endswith(('.jpg', '.png', '.jpeg')) for f in files):
|
87 |
train_img_dir = dirpath
|
|
|
88 |
break
|
89 |
if train_img_dir is None:
|
90 |
raise FileNotFoundError(f"No image files found under {root}")
|
|
|
31 |
ws, proj, ver = parse_roboflow_url(dataset_url)
|
32 |
version_obj = rf.workspace(ws).project(proj).version(ver)
|
33 |
dataset = version_obj.download("coco-segmentation")
|
34 |
+
root = dataset.location # e.g. "/home/user/app/ds-2"
|
35 |
+
|
36 |
+
# --- DEBUG: print out the downloaded directory tree ---
|
37 |
+
print(f"Dataset downloaded to: {root}")
|
38 |
+
for dirpath, dirnames, filenames in os.walk(root):
|
39 |
+
print(f"\nDirectory: {dirpath}")
|
40 |
+
print(f" Subdirs: {dirnames}")
|
41 |
+
print(f" Files: {filenames}")
|
42 |
|
43 |
# 2) search for any JSON file with "train" in its name
|
44 |
ann_file = None
|
|
|
46 |
for fname in filenames:
|
47 |
if 'train' in fname.lower() and fname.lower().endswith('.json'):
|
48 |
ann_file = os.path.join(dirpath, fname)
|
49 |
+
print(f"Found annotation file: {ann_file}")
|
50 |
break
|
51 |
if ann_file:
|
52 |
break
|
|
|
68 |
lbl_out = os.path.join(out_root, "labels")
|
69 |
os.makedirs(img_out, exist_ok=True)
|
70 |
os.makedirs(lbl_out, exist_ok=True)
|
71 |
+
print(f"Preparing YOLOv8 output in: {out_root}")
|
72 |
|
73 |
# 6) convert each segmentation annotation to a YOLO bbox line
|
74 |
annos = {}
|
|
|
94 |
for dirpath, _, files in os.walk(root):
|
95 |
if any(f.lower().endswith(('.jpg', '.png', '.jpeg')) for f in files):
|
96 |
train_img_dir = dirpath
|
97 |
+
print(f"Found image directory: {train_img_dir}")
|
98 |
break
|
99 |
if train_img_dir is None:
|
100 |
raise FileNotFoundError(f"No image files found under {root}")
|