Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,9 +27,9 @@ def parse_roboflow_url(url: str):
|
|
27 |
|
28 |
def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
29 |
"""
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
"""
|
34 |
rf = Roboflow(api_key=api_key)
|
35 |
ws, proj, ver = parse_roboflow_url(dataset_url)
|
@@ -85,7 +85,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
85 |
# locate images and write labels
|
86 |
img_dir = None
|
87 |
for dp, _, files in os.walk(root):
|
88 |
-
if any(f.lower().endswith(('.jpg','.png','jpeg')) for f in files):
|
89 |
img_dir = dp
|
90 |
break
|
91 |
if not img_dir:
|
@@ -97,7 +97,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
97 |
if not os.path.isfile(src):
|
98 |
continue
|
99 |
shutil.copy(src, os.path.join(img_out, fname))
|
100 |
-
with open(os.path.join(lbl_out, fname.rsplit('.',1)[0] + ".txt"), 'w') as lf:
|
101 |
lf.write("\n".join(annos.get(pid, [])))
|
102 |
|
103 |
# build preview galleries
|
@@ -110,54 +110,61 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
110 |
for a in coco['annotations']:
|
111 |
if a['image_id'] != fname2id[fn]:
|
112 |
continue
|
113 |
-
pts = np.array(a['segmentation'][0], np.int32).reshape(-1,2)
|
114 |
-
cv2.polylines(seg_vis, [pts], True, (255,0,0), 2)
|
115 |
|
116 |
box_vis = img.copy()
|
117 |
for line in annos.get(fname2id[fn], []):
|
118 |
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
|
119 |
iw, ih = images_info[fname2id[fn]]['width'], images_info[fname2id[fn]]['height']
|
120 |
-
w0, h0 = int(wnorm*iw), int(hnorm*ih)
|
121 |
-
x0, y0 = int(cxn*iw - w0/2), int(cyn*ih - h0/2)
|
122 |
-
cv2.rectangle(box_vis, (x0,y0), (x0+w0,y0+h0), (0,255,0), 2)
|
123 |
|
124 |
before.append(Image.fromarray(seg_vis))
|
125 |
after.append(Image.fromarray(box_vis))
|
126 |
|
127 |
-
|
|
|
128 |
|
129 |
|
130 |
def upload_and_train_detection(api_key: str, project_slug: str, dataset_path: str):
|
131 |
"""
|
132 |
-
|
133 |
-
|
134 |
-
Returns the hosted inference endpoint URL.
|
135 |
"""
|
136 |
rf = Roboflow(api_key=api_key)
|
137 |
ws = rf.workspace()
|
138 |
|
139 |
-
# upload
|
140 |
ws.upload_dataset(
|
141 |
dataset_path,
|
142 |
project_slug,
|
|
|
143 |
project_license="MIT",
|
144 |
-
project_type="object-detection"
|
|
|
|
|
145 |
)
|
146 |
|
147 |
-
# generate a new version
|
148 |
proj = ws.project(project_slug)
|
149 |
-
|
|
|
|
|
|
|
150 |
|
151 |
-
# train
|
152 |
-
proj.version(
|
|
|
153 |
|
154 |
-
#
|
155 |
-
m =
|
156 |
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
157 |
|
158 |
|
159 |
with gr.Blocks() as app:
|
160 |
-
gr.Markdown("## π Segmentation β YOLOv8 Converter + Auto
|
161 |
|
162 |
# Converter UI
|
163 |
api_input = gr.Textbox(label="Roboflow API Key", type="password")
|
@@ -174,7 +181,7 @@ with gr.Blocks() as app:
|
|
174 |
outputs=[before_gal, after_gal, state_path, state_slug]
|
175 |
)
|
176 |
|
177 |
-
#
|
178 |
train_btn = gr.Button("Upload & Train Detection Model")
|
179 |
endpoint_text = gr.Textbox(label="Hosted Detection Endpoint URL")
|
180 |
|
|
|
27 |
|
28 |
def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
29 |
"""
|
30 |
+
Download segmentation dataset from Roboflow,
|
31 |
+
convert masks β YOLOv8 bboxes,
|
32 |
+
and return before/after galleries plus local path & auto-generated slug.
|
33 |
"""
|
34 |
rf = Roboflow(api_key=api_key)
|
35 |
ws, proj, ver = parse_roboflow_url(dataset_url)
|
|
|
85 |
# locate images and write labels
|
86 |
img_dir = None
|
87 |
for dp, _, files in os.walk(root):
|
88 |
+
if any(f.lower().endswith(('.jpg', '.png', 'jpeg')) for f in files):
|
89 |
img_dir = dp
|
90 |
break
|
91 |
if not img_dir:
|
|
|
97 |
if not os.path.isfile(src):
|
98 |
continue
|
99 |
shutil.copy(src, os.path.join(img_out, fname))
|
100 |
+
with open(os.path.join(lbl_out, fname.rsplit('.', 1)[0] + ".txt"), 'w') as lf:
|
101 |
lf.write("\n".join(annos.get(pid, [])))
|
102 |
|
103 |
# build preview galleries
|
|
|
110 |
for a in coco['annotations']:
|
111 |
if a['image_id'] != fname2id[fn]:
|
112 |
continue
|
113 |
+
pts = np.array(a['segmentation'][0], np.int32).reshape(-1, 2)
|
114 |
+
cv2.polylines(seg_vis, [pts], True, (255, 0, 0), 2)
|
115 |
|
116 |
box_vis = img.copy()
|
117 |
for line in annos.get(fname2id[fn], []):
|
118 |
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
|
119 |
iw, ih = images_info[fname2id[fn]]['width'], images_info[fname2id[fn]]['height']
|
120 |
+
w0, h0 = int(wnorm * iw), int(hnorm * ih)
|
121 |
+
x0, y0 = int(cxn * iw - w0/2), int(cyn * ih - h0/2)
|
122 |
+
cv2.rectangle(box_vis, (x0, y0), (x0 + w0, y0 + h0), (0, 255, 0), 2)
|
123 |
|
124 |
before.append(Image.fromarray(seg_vis))
|
125 |
after.append(Image.fromarray(box_vis))
|
126 |
|
127 |
+
detection_slug = f"{proj}-detection"
|
128 |
+
return before, after, out_root, detection_slug
|
129 |
|
130 |
|
131 |
def upload_and_train_detection(api_key: str, project_slug: str, dataset_path: str):
|
132 |
"""
|
133 |
+
Upload a local YOLOv8 dataset to Roboflow, generate & train a new detection version,
|
134 |
+
and return the hosted inference endpoint URL.
|
|
|
135 |
"""
|
136 |
rf = Roboflow(api_key=api_key)
|
137 |
ws = rf.workspace()
|
138 |
|
139 |
+
# 1) upload
|
140 |
ws.upload_dataset(
|
141 |
dataset_path,
|
142 |
project_slug,
|
143 |
+
num_workers=10,
|
144 |
project_license="MIT",
|
145 |
+
project_type="object-detection",
|
146 |
+
batch_name=None,
|
147 |
+
num_retries=0
|
148 |
)
|
149 |
|
150 |
+
# 2) generate a new version
|
151 |
proj = ws.project(project_slug)
|
152 |
+
new_version = proj.generate_version(settings={
|
153 |
+
"preprocessing": {},
|
154 |
+
"augmentation": {}
|
155 |
+
})
|
156 |
|
157 |
+
# 3) train (fast)
|
158 |
+
version = proj.version(new_version)
|
159 |
+
version.train(speed="fast")
|
160 |
|
161 |
+
# 4) get endpoint
|
162 |
+
m = version.model
|
163 |
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
164 |
|
165 |
|
166 |
with gr.Blocks() as app:
|
167 |
+
gr.Markdown("## π Segmentation β YOLOv8 Converter + AutoβTrainer")
|
168 |
|
169 |
# Converter UI
|
170 |
api_input = gr.Textbox(label="Roboflow API Key", type="password")
|
|
|
181 |
outputs=[before_gal, after_gal, state_path, state_slug]
|
182 |
)
|
183 |
|
184 |
+
# Trainer UI
|
185 |
train_btn = gr.Button("Upload & Train Detection Model")
|
186 |
endpoint_text = gr.Textbox(label="Hosted Detection Endpoint URL")
|
187 |
|